Suppr超能文献

从纳米颗粒粒径角度观察纳米颗粒表面的蛋白冠。

The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective.

机构信息

Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jul;10(4):e1500. doi: 10.1002/wnan.1500. Epub 2017 Oct 26.

Abstract

Most surfaces of engineered nanoparticles (NPs) are reactive toward biomolecules. Therefore, whenever NPs become immersed in biological fluids, proteins and other biomolecules bind to the NP surface, forming an adsorption layer (biomolecular corona) that modifies the NPs' physicochemical properties and subsequent interactions with living systems. Its exploration is a formidable endeavor owing to the enormous diversity of engineered NPs in terms of their physicochemical properties and the vast number of biomolecules available in biofluids that may bind to NPs with widely different strengths. Significant progress has been made in our understanding of the biomolecular corona, but even very basic issues are still controversially debated. In fact, there are divergent views of its microscopic structure and dynamics, even on physical properties, such as its thickness. As an example, there is no agreement on whether proteins form monolayers or multilayers upon adsorption. In our quantitative studies of NP-protein interactions by in situ fluorescence correlation spectroscopy (FCS) with highly defined model NPs and important serum proteins, we have universally observed protein monolayer formation around NPs under saturation or even oversaturation conditions. Here, we critically discuss biomolecular corona characterization using FCS and dynamic light scattering and identify challenges and future opportunities. Further careful, quantitative experiments are needed to elucidate the mechanisms of biomolecular corona formation and to characterize its structure. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.

摘要

大多数工程纳米粒子(NPs)的表面都对生物分子具有反应性。因此,每当 NPs 浸入生物流体中时,蛋白质和其他生物分子就会结合到 NP 表面,形成一个吸附层(生物分子冠),从而改变 NPs 的物理化学性质以及随后与生命系统的相互作用。由于工程 NPs 在物理化学性质方面具有巨大的多样性,并且生物流体中可能与 NPs 以不同强度结合的生物分子数量众多,因此对其进行探索是一项艰巨的任务。我们在理解生物分子冠方面已经取得了重大进展,但即使是非常基本的问题仍存在争议。事实上,即使是物理性质,例如其厚度,其微观结构和动力学也存在不同的观点。例如,关于蛋白质在吸附时是形成单层还是多层,仍存在分歧。在我们通过原位荧光相关光谱(FCS)对具有高度定义的模型 NPs 和重要的血清蛋白的 NP-蛋白质相互作用进行的定量研究中,我们普遍观察到在饱和甚至过饱和条件下 NPs 周围形成蛋白质单层。在这里,我们使用 FCS 和动态光散射对生物分子冠的特性进行了批判性讨论,并确定了挑战和未来的机会。需要进一步进行仔细、定量的实验,以阐明生物分子冠形成的机制并对其结构进行表征。本文属于以下类别: 生物学中的纳米技术方法 > 生物学中的纳米级系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验