Department of Chemistry, Duke University, Durham, NC, 27708, USA.
Angew Chem Int Ed Engl. 2021 Oct 4;60(41):22359-22367. doi: 10.1002/anie.202105741. Epub 2021 Aug 1.
Nanoparticles (NPs) adsorb proteins when exposed to biological fluids, forming a dynamic protein corona that affects their fate in biological environments. A comprehensive understanding of the protein corona is lacking due to the inability of current techniques to precisely measure the full corona in situ at the single-particle level. Herein, we introduce a 3D real-time single-particle tracking spectroscopy to "lock-on" to single freely diffusing polystyrene NPs and probe their individual protein coronas, primarily using bovine serum albumin (BSA) as a model system. The fluorescence signals and diffusive motions of the tracked NPs enable quantification of the "hard corona" using mean-squared displacement analysis. Critically, this method's particle-by-particle nature enabled a lock-in-type frequency filtering approach to extract the full protein corona, despite the typically confounding effect of high background signal from unbound proteins. From these results, the dynamic in situ full protein corona is observed to contain twice the number of proteins compared to the ex situ-measured "hard" protein corona.
纳米粒子(NPs)在暴露于生物流体时会吸附蛋白质,形成动态的蛋白质冠,从而影响它们在生物环境中的命运。由于目前的技术无法在单个颗粒水平上精确原位测量完整的蛋白质冠,因此对蛋白质冠的全面了解还很缺乏。在这里,我们引入了一种 3D 实时单颗粒跟踪光谱技术,可以“锁定”单个自由扩散的聚苯乙烯 NPs,并探测它们各自的蛋白质冠,主要使用牛血清白蛋白(BSA)作为模型系统。跟踪 NPs 的荧光信号和扩散运动允许使用均方位移分析定量“硬壳”。至关重要的是,尽管来自未结合蛋白的高背景信号通常会产生干扰,但该方法的逐颗粒特性使我们能够采用锁定型频率滤波方法来提取完整的蛋白质冠。从这些结果中,可以观察到动态原位全蛋白质冠中所含的蛋白质数量是体外测量的“硬”蛋白质冠的两倍。