Suppr超能文献

通过Förster 型共振能量转移中继延长 roGFP 发射,实现活细胞中同时进行双区室比率型氧化还原成像。

Extending roGFP Emission via Förster-Type Resonance Energy Transfer Relay Enables Simultaneous Dual Compartment Ratiometric Redox Imaging in Live Cells.

机构信息

Department of Chemistry, ‡Institute for Integrative Neuroscience, and §Instititute of Inflammation, Immunology, and Infectious Disease, Purdue University , 560 Oval Drive, Box 68, West Lafayette, Indiana 47907, United States.

出版信息

ACS Sens. 2017 Nov 22;2(11):1721-1729. doi: 10.1021/acssensors.7b00689. Epub 2017 Nov 7.

Abstract

Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.

摘要

活性氧(ROS)介导细胞间和细胞器内的信号转导,ROS 在细胞区室(如线粒体和细胞质)之间传播氧化应激。每个细胞区室都有自己的 ROS 来源和抗氧化机制,这些机制导致 ROS 水平在信号转导、代谢和应激过程中发生动态波动。然而,由于缺乏同时测量同一细胞中多个亚细胞区室的可用传感器,细胞区室之间的氧化还原动力学偶联尚未得到很好的研究。目前,氧化还原敏感的绿色荧光蛋白(roGFP)已被广泛用于研究特定区室的氧化还原动力学,因为它提供了定量的比率读数,并且可以作为遗传编码的传感器进行亚细胞靶向。在这里,我们报告了一类新的遗传编码荧光蛋白传感器,它们通过Förster 型共振能量转移将 roGFP 的荧光发射扩展到一个接受红色荧光蛋白,用于双色活细胞显微镜。我们对传感器蛋白的氧化还原和光学性质进行了表征,并证明它们可用于同时测量活细胞中的细胞质和线粒体 ROS。此外,我们使用这些传感器揭示了当神经母细胞瘤细胞暴露于还原和代谢应激时,细胞质和线粒体之间氧化还原偶联的细胞间异质性。

相似文献

本文引用的文献

3
Oxidative Stress.氧化应激。
Annu Rev Biochem. 2017 Jun 20;86:715-748. doi: 10.1146/annurev-biochem-061516-045037. Epub 2017 Apr 24.
5
A Guide to Fluorescent Protein FRET Pairs.荧光蛋白荧光共振能量转移对指南。
Sensors (Basel). 2016 Sep 14;16(9):1488. doi: 10.3390/s16091488.
10
Mitonuclear communication in homeostasis and stress.线粒体与核基因通讯在稳态和应激中的作用
Nat Rev Mol Cell Biol. 2016 Apr;17(4):213-26. doi: 10.1038/nrm.2016.23. Epub 2016 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验