Suppr超能文献

抗氧化途径酶对活性氧清除的特定区域控制

Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes.

作者信息

Dey Swati, Sidor Agnieszka, O'Rourke Brian

机构信息

From the Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205.

From the Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205

出版信息

J Biol Chem. 2016 May 20;291(21):11185-97. doi: 10.1074/jbc.M116.726968. Epub 2016 Apr 5.

Abstract

Oxidative stress arises from an imbalance in the production and scavenging rates of reactive oxygen species (ROS) and is a key factor in the pathophysiology of cardiovascular disease and aging. The presence of parallel pathways and multiple intracellular compartments, each having its own ROS sources and antioxidant enzymes, complicates the determination of the most important regulatory nodes of the redox network. Here we quantified ROS dynamics within specific intracellular compartments in the cytosol and mitochondria and determined which scavenging enzymes exert the most control over antioxidant fluxes in H9c2 cardiac myoblasts. We used novel targeted viral gene transfer vectors expressing redox-sensitive GFP fused to sensor domains to measure H2O2 or oxidized glutathione. Using genetic manipulation in heart-derived H9c2 cells, we explored the contribution of specific antioxidant enzymes to ROS scavenging and glutathione redox potential within each intracellular compartment. Our findings reveal that antioxidant flux is strongly dependent on mitochondrial substrate catabolism, with availability of NADPH as a major rate-controlling step. Moreover, ROS scavenging by mitochondria significantly contributes to cytoplasmic ROS handling. The findings provide fundamental information about the control of ROS scavenging by the redox network and suggest novel interventions for circumventing oxidative stress in cardiac cells.

摘要

氧化应激源于活性氧(ROS)产生与清除速率的失衡,是心血管疾病和衰老病理生理学中的关键因素。存在平行途径和多个细胞内区室,每个区室都有其自身的ROS来源和抗氧化酶,这使得确定氧化还原网络中最重要的调节节点变得复杂。在这里,我们量化了细胞质和线粒体中特定细胞内区室的ROS动态,并确定了哪些清除酶对H9c2心肌成纤维细胞中的抗氧化通量具有最大的控制作用。我们使用了新型靶向病毒基因转移载体,其表达与传感器结构域融合的氧化还原敏感型绿色荧光蛋白(GFP)来测量过氧化氢(H2O2)或氧化型谷胱甘肽。通过对心脏来源的H9c2细胞进行基因操作,我们探索了特定抗氧化酶对每个细胞内区室中ROS清除和谷胱甘肽氧化还原电位的贡献。我们的研究结果表明,抗氧化通量强烈依赖于线粒体底物分解代谢,其中烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的可用性是主要的速率控制步骤。此外,线粒体对ROS的清除显著有助于细胞质中ROS的处理。这些发现提供了有关氧化还原网络对ROS清除控制的基本信息,并提出了规避心脏细胞氧化应激的新干预措施。

相似文献

1
Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes.
J Biol Chem. 2016 May 20;291(21):11185-97. doi: 10.1074/jbc.M116.726968. Epub 2016 Apr 5.
2
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.
3
HO metabolism in liver and heart mitochondria: Low emitting-high scavenging and high emitting-low scavenging systems.
Free Radic Biol Med. 2018 Aug 20;124:135-148. doi: 10.1016/j.freeradbiomed.2018.05.064. Epub 2018 May 24.
4
Temperature rise and copper exposure reduce heart mitochondrial reactive oxygen species scavenging capacity.
Comp Biochem Physiol C Toxicol Pharmacol. 2021 May;243:108999. doi: 10.1016/j.cbpc.2021.108999. Epub 2021 Feb 5.
5
A humanin analog decreases oxidative stress and preserves mitochondrial integrity in cardiac myoblasts.
Biochem Biophys Res Commun. 2013 Oct 18;440(2):197-203. doi: 10.1016/j.bbrc.2013.08.055. Epub 2013 Aug 25.
7
9
Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
Redox Biol. 2014 Apr 24;2:667-72. doi: 10.1016/j.redox.2014.04.010. eCollection 2014.
10
Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
Redox Biol. 2016 Aug;8:110-8. doi: 10.1016/j.redox.2015.12.010. Epub 2015 Dec 31.

引用本文的文献

1
Manganese Porphyrin Treatment Improves Redox Status Caused by Acute Compressive Spinal Cord Trauma.
Antioxidants (Basel). 2025 May 14;14(5):587. doi: 10.3390/antiox14050587.
2
The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions.
Biomolecules. 2025 Feb 5;15(2):229. doi: 10.3390/biom15020229.
3
Quantitative, real-time imaging of spreading depolarization-associated neuronal ROS production.
Front Cell Neurosci. 2024 Oct 11;18:1465531. doi: 10.3389/fncel.2024.1465531. eCollection 2024.
5
Bioenergetic myths of energy transduction in eukaryotic cells.
Front Mol Biosci. 2024 Jun 17;11:1402910. doi: 10.3389/fmolb.2024.1402910. eCollection 2024.
7
Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes.
Biomolecules. 2024 Jan 24;14(2):144. doi: 10.3390/biom14020144.
8
Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2307904121. doi: 10.1073/pnas.2307904121. Epub 2024 Jan 11.
9
Glycolytic enzymes in non-glycolytic web: functional analysis of the key players.
Cell Biochem Biophys. 2024 Jun;82(2):351-378. doi: 10.1007/s12013-023-01213-5. Epub 2024 Jan 9.
10
Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production.
bioRxiv. 2023 Oct 18:2023.10.14.562276. doi: 10.1101/2023.10.14.562276.

本文引用的文献

1
Mechanisms of sudden cardiac death: oxidants and metabolism.
Circ Res. 2015 Jun 5;116(12):1937-55. doi: 10.1161/CIRCRESAHA.116.304691.
2
Identification of novel nuclear targets of human thioredoxin 1.
Mol Cell Proteomics. 2014 Dec;13(12):3507-18. doi: 10.1074/mcp.M114.040931. Epub 2014 Sep 17.
3
The mitochondrial thioredoxin is required for liver development in zebrafish.
Curr Mol Med. 2014;14(6):772-82. doi: 10.2174/1566524014666140724103927.
4
Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure.
Circ Res. 2014 Jun 20;115(1):44-54. doi: 10.1161/CIRCRESAHA.115.303062. Epub 2014 Apr 29.
5
Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia.
J Cardiovasc Pharmacol Ther. 2014 Jan;19(1):121-32. doi: 10.1177/1074248413508003. Epub 2013 Nov 28.
7
The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin.
J Am Soc Nephrol. 2013 Jul;24(8):1250-61. doi: 10.1681/ASN.2012121216. Epub 2013 Jul 11.
8
A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
Free Radic Biol Med. 2013 Oct;63:446-56. doi: 10.1016/j.freeradbiomed.2013.05.049. Epub 2013 Jun 7.
9
The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells.
Biochim Biophys Acta. 2014 Feb;1840(2):730-8. doi: 10.1016/j.bbagen.2013.05.004. Epub 2013 May 10.
10
Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts.
Antioxid Redox Signal. 2014 Jan 10;20(2):267-80. doi: 10.1089/ars.2012.4616. Epub 2013 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验