Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
J Biophotonics. 2018 Feb;11(2). doi: 10.1002/jbio.201700178. Epub 2018 Jan 4.
Image-based cellular assay advances approaches to dissect complex cellular characteristics through direct visualization of cellular functional structures. However, available technologies face a common challenge, especially when it comes to the unmet need for unraveling population heterogeneity at single-cell precision: higher imaging resolution (and thus content) comes at the expense of lower throughput, or vice versa. To overcome this challenge, a new type of imaging flow cytometer based upon an all-optical ultrafast laser-scanning imaging technique, called free-space angular-chirp-enhanced delay (FACED) is reported. It enables an imaging throughput (>20 000 cells s ) 1 to 2 orders of magnitude higher than the camera-based imaging flow cytometers. It also has 2 critical advantages over optical time-stretch imaging flow cytometry, which achieves a similar throughput: (1) it is widely compatible to the repertoire of biochemical contrast agents, favoring biomolecular-specific cellular assay and (2) it enables high-throughput visualization of functional morphology of individual cells with subcellular resolution. These capabilities enable multiparametric single-cell image analysis which reveals cellular heterogeneity, for example, in the cell-death processes demonstrated in this work-the information generally masked in non-imaging flow cytometry. Therefore, this platform empowers not only efficient large-scale single-cell measurements, but also detailed mechanistic analysis of complex cellular processes.
基于图像的细胞分析通过直接观察细胞功能结构,推进了剖析复杂细胞特征的方法。然而,现有的技术面临着一个共同的挑战,特别是在需要以单细胞精度揭示群体异质性方面:更高的成像分辨率(因此内容)是以更低的通量为代价的,或者反之亦然。为了克服这一挑战,报道了一种基于全光学超快激光扫描成像技术的新型成像流式细胞仪,称为自由空间角度啁啾增强延迟(FACED)。它能够实现比基于相机的成像流式细胞仪高 1 到 2 个数量级的成像通量(>20000 个细胞 s -1 )。与实现类似通量的光时间拉伸成像流式细胞术相比,它还具有 2 个关键优势:(1)它与广泛的生化对比剂兼容,有利于生物分子特异性细胞分析;(2)它能够以亚细胞分辨率实现单个细胞功能形态的高通量可视化。这些功能使能够进行多参数单细胞图像分析,从而揭示细胞异质性,例如在本工作中展示的细胞死亡过程中——这些信息通常在非成像流式细胞术中被掩盖。因此,该平台不仅能够实现高效的大规模单细胞测量,还能够对复杂细胞过程进行详细的机制分析。