1 Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio.
2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan.
Antioxid Redox Signal. 2019 Jan 20;30(3):375-398. doi: 10.1089/ars.2017.7415. Epub 2017 Dec 11.
Diabetic cardiomyopathy (DCM) is a frequent complication occurring even in well-controlled asymptomatic diabetic patients, and it may advance to heart failure (HF). The diabetic heart is characterized by a state of "metabolic rigidity" involving enhanced rates of fatty acid uptake and mitochondrial oxidation as the predominant energy source, and it exhibits mitochondrial electron transport chain defects. These alterations promote redox state changes evidenced by a decreased NAD/NADH ratio associated with an increase in acetyl-CoA/CoA ratio. NAD is a co-substrate for deacetylases, sirtuins, and a critical molecule in metabolism and redox signaling; whereas acetyl-CoA promotes protein lysine acetylation, affecting mitochondrial integrity and causing epigenetic changes. DCM lacks specific therapies with treatment only in later disease stages using standard, palliative HF interventions. Traditional therapy targeting neurohormonal signaling and hemodynamics failed to improve mortality rates. Though mitochondrial redox state changes occur in the heart with obesity and diabetes, how the mitochondrial NAD/NADH redox couple connects the remodeled energy metabolism with mitochondrial and cytosolic antioxidant defense and nuclear epigenetic changes remains to be determined. Mitochondrial therapies targeting the mitochondrial NAD/NADH redox ratio may alleviate cardiac dysfunction. Specific therapies must be supported by an optimal understanding of changes in mitochondrial redox state and how it influences other cellular compartments; this field has begun to surface as a therapeutic target for the diabetic heart. We propose an approach based on an alternate mitochondrial electron transport that normalizes the mitochondrial redox state and improves cardiac function in diabetes.
糖尿病心肌病(DCM)是一种常见的并发症,即使在血糖控制良好的无症状糖尿病患者中也会发生,并且它可能进展为心力衰竭(HF)。糖尿病心脏的特征是一种“代谢刚性”状态,涉及增强脂肪酸摄取和线粒体氧化作为主要能量来源的速率,并且表现出线粒体电子传递链缺陷。这些改变促进了氧化还原状态的变化,表现为与乙酰辅酶 A/辅酶 A 比值增加相关的 NAD/NADH 比值降低。NAD 是脱乙酰酶、沉默调节蛋白和代谢和氧化还原信号的关键分子的辅酶;而乙酰辅酶 A 促进蛋白质赖氨酸乙酰化,影响线粒体完整性并导致表观遗传变化。DCM 缺乏特异性治疗方法,仅在疾病后期使用标准的姑息性 HF 干预措施进行治疗。针对神经激素信号和血液动力学的传统治疗未能改善死亡率。尽管肥胖和糖尿病中心脏存在线粒体氧化还原状态变化,但线粒体 NAD/NADH 氧化还原偶联如何将重塑的能量代谢与线粒体和细胞质抗氧化防御以及核表观遗传变化联系起来仍有待确定。针对线粒体 NAD/NADH 氧化还原比的线粒体治疗可能缓解心脏功能障碍。特定的治疗方法必须以对线粒体氧化还原状态变化及其对其他细胞区室的影响的最佳理解为支撑;该领域已开始成为糖尿病心脏的治疗靶点。我们提出了一种基于替代线粒体电子传递的方法,该方法可使线粒体氧化还原状态正常化并改善糖尿病中的心脏功能。