Suppr超能文献

使用定性推理测试科学模型:在纤维素水解中的应用。

Testing scientific models using Qualitative Reasoning: Application to cellulose hydrolysis.

作者信息

Kansou Kamal, Rémond Caroline, Paës Gabriel, Bonnin Estelle, Tayeb Jean, Bredeweg Bert

机构信息

INRA, Biopolymères Interactions Assemblages, BP 71267, 44316, Nantes, France.

FARE laboratory, INRA, University of Reims Champagne-Ardenne, 51100, Reims, France.

出版信息

Sci Rep. 2017 Oct 26;7(1):14122. doi: 10.1038/s41598-017-14281-4.

Abstract

With the accumulation of scientific information in natural science, even experts can find difficult to keep integrating new piece of information. It is critical to explore modelling solutions able to capture information scattered in publications as a computable representation form. Traditional modelling techniques are important in that regard, but relying on numerical information comes with limitations for integrating results from distinct studies, high-level representations can be more suited. We present an approach to stepwise construct mechanistic explanation from selected scientific papers using the Qualitative Reasoning framework. As a proof of concept, we apply the approach to modelling papers about cellulose hydrolysis mechanism, focusing on the causal explanations for the decreasing of hydrolytic rate. Two explanatory QR models are built to capture classical explanations for the phenomenon. Our results show that none of them provides sufficient explanation for a set of basic experimental observations described in the literature. Combining the two explanations into a third one allowed to get a new and sufficient explanation for the experimental results. In domains where numerical data are scarce and strongly related to the experimental conditions, this approach can aid assessing the conceptual validity of an explanation and support integration of knowledge from different sources.

摘要

随着自然科学领域科学信息的不断积累,即使是专家也难以持续整合新的信息片段。探索能够将分散在出版物中的信息以可计算的表示形式捕获的建模解决方案至关重要。传统建模技术在这方面很重要,但依赖数值信息在整合不同研究结果时存在局限性,高层次表示可能更适用。我们提出了一种使用定性推理框架从选定的科学论文中逐步构建机制性解释的方法。作为概念验证,我们将该方法应用于纤维素水解机制的建模论文,重点关注水解速率降低的因果解释。构建了两个解释性定性推理模型来捕捉对该现象的经典解释。我们的结果表明,它们都没有为文献中描述的一组基本实验观察提供充分的解释。将这两种解释合并为第三种解释后,能够对实验结果给出新的充分解释。在数值数据稀缺且与实验条件密切相关的领域,这种方法有助于评估解释的概念有效性,并支持整合来自不同来源的知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f4/5658447/c17ce1920b96/41598_2017_14281_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验