Shim Yong, Chen Shuhan, Sengupta Abhronil, Roy Kaushik
School of Electrical & Computer Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
Sci Rep. 2017 Oct 26;7(1):14101. doi: 10.1038/s41598-017-14240-z.
Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities also underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference.
从实时输入数据进行概率推理正变得越来越流行,并且可能是实现认知智能的潜在途径之一。事实上,初步研究表明,随机功能也是人类大脑皮层微电路中神经元尖峰行为的基础。与这些观察结果一致,神经形态和其他非常规计算平台最近开始采用根据输入刺激的大小概率性地生成输出的计算单元。在这项工作中,我们通过实验展示了一种自旋电子器件,它可以直接映射到这种可控随机开关元件的功能。我们表明,在存在自旋轨道扭矩和热噪声的情况下,Ta/CoFeB/MgO异质结构的概率开关可用于在大量非常规计算场景中实现概率推理。这项工作可能为直接模仿贝叶斯推理计算单元的硬件铺平道路。