Nat Mater. 2013 Jul;12(7):611-6. doi: 10.1038/nmat3675. Epub 2013 Jun 16.
In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Néel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.
在大多数铁磁体中,磁化从一个畴到另一个畴旋转,没有优先的手性。然而,破缺的反转对称性可以消除手性简并,通过 Dzyaloshinskii-Moriya 相互作用(DMI)导致拓扑丰富的自旋纹理,如自旋螺旋和斯格明子。在这里,我们表明在夹在重金属和氧化物之间的超薄金属铁磁体中,DMI 稳定了手性畴壁(DW),其自旋纹理使非常高效的电流驱动运动成为可能。我们表明,自旋霍尔效应的自旋力矩在 Pt/CoFe/MgO 和 Ta/CoFe/MgO 中驱动 DW 向相反的方向运动,如果 DW 采用具有左手手性的奈尔构型,则只能解释这一现象。我们通过在垂直和平行于自旋螺旋的磁场下检查电流驱动 DW 动力学,直接证实了 DW 的手性和刚性。这项工作解决了有争议的实验结果的起源,并为界面设计自旋电子器件提供了一条新途径。