Suppr超能文献

基于随机自旋电子器件的贝叶斯网络构建模块的硬件实现。

Hardware implementation of Bayesian network building blocks with stochastic spintronic devices.

作者信息

Debashis Punyashloka, Ostwal Vaibhav, Faria Rafatul, Datta Supriyo, Appenzeller Joerg, Chen Zhihong

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Sci Rep. 2020 Sep 29;10(1):16002. doi: 10.1038/s41598-020-72842-6.

Abstract

Bayesian networks are powerful statistical models to understand causal relationships in real-world probabilistic problems such as diagnosis, forecasting, computer vision, etc. For systems that involve complex causal dependencies among many variables, the complexity of the associated Bayesian networks become computationally intractable. As a result, direct hardware implementation of these networks is one promising approach to reducing power consumption and execution time. However, the few hardware implementations of Bayesian networks presented in literature rely on deterministic CMOS devices that are not efficient in representing the stochastic variables in a Bayesian network that encode the probability of occurrence of the associated event. This work presents an experimental demonstration of a Bayesian network building block implemented with inherently stochastic spintronic devices based on the natural physics of nanomagnets. These devices are based on nanomagnets with perpendicular magnetic anisotropy, initialized to their hard axes by the spin orbit torque from a heavy metal under-layer utilizing the giant spin Hall effect, enabling stochastic behavior. We construct an electrically interconnected network of two stochastic devices and manipulate the correlations between their states by changing connection weights and biases. By mapping given conditional probability tables to the circuit hardware, we demonstrate that any two node Bayesian networks can be implemented by our stochastic network. We then present the stochastic simulation of an example case of a four node Bayesian network using our proposed device, with parameters taken from the experiment. We view this work as a first step towards the large scale hardware implementation of Bayesian networks.

摘要

贝叶斯网络是强大的统计模型,用于理解现实世界概率问题中的因果关系,如诊断、预测、计算机视觉等。对于涉及许多变量之间复杂因果依赖关系的系统,相关贝叶斯网络的复杂性在计算上变得难以处理。因此,这些网络的直接硬件实现是降低功耗和执行时间的一种有前途的方法。然而,文献中提出的少数贝叶斯网络硬件实现依赖于确定性CMOS器件,这些器件在表示贝叶斯网络中编码相关事件发生概率的随机变量时效率不高。这项工作展示了一个基于纳米磁体自然物理特性、由固有随机自旋电子器件实现的贝叶斯网络构建模块的实验演示。这些器件基于具有垂直磁各向异性的纳米磁体,利用巨自旋霍尔效应,通过来自重金属底层的自旋轨道扭矩将其初始化为硬轴方向,从而实现随机行为。我们构建了一个由两个随机器件组成的电互连网络,并通过改变连接权重和偏置来操纵它们状态之间的相关性。通过将给定的条件概率表映射到电路硬件,我们证明了任何两节点贝叶斯网络都可以由我们的随机网络实现。然后,我们使用我们提出的器件,对一个四节点贝叶斯网络的示例情况进行了随机模拟,参数取自实验。我们将这项工作视为迈向贝叶斯网络大规模硬件实现的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验