Suppr超能文献

IP4M:基于质谱的代谢组学数据挖掘的集成平台。

IP4M: an integrated platform for mass spectrometry-based metabolomics data mining.

机构信息

Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.

Human Metabolomics Institute, Inc., Shenzhen, 518109, Guangdong, China.

出版信息

BMC Bioinformatics. 2020 Oct 7;21(1):444. doi: 10.1186/s12859-020-03786-x.

Abstract

BACKGROUND

Metabolomics data analyses rely on the use of bioinformatics tools. Many integrated multi-functional tools have been developed for untargeted metabolomics data processing and have been widely used. More alternative platforms are expected for both basic and advanced users.

RESULTS

Integrated mass spectrometry-based untargeted metabolomics data mining (IP4M) software was designed and developed. The IP4M, has 62 functions categorized into 8 modules, covering all the steps of metabolomics data mining, including raw data preprocessing (alignment, peak de-convolution, peak picking, and isotope filtering), peak annotation, peak table preprocessing, basic statistical description, classification and biomarker detection, correlation analysis, cluster and sub-cluster analysis, regression analysis, ROC analysis, pathway and enrichment analysis, and sample size and power analysis. Additionally, a KEGG-derived metabolic reaction database was embedded and a series of ratio variables (product/substrate) can be generated with enlarged information on enzyme activity. A new method, GRaMM, for correlation analysis between metabolome and microbiome data was also provided. IP4M provides both a number of parameters for customized and refined analysis (for expert users), as well as 4 simplified workflows with few key parameters (for beginners who are unfamiliar with computational metabolomics). The performance of IP4M was evaluated and compared with existing computational platforms using 2 data sets derived from standards mixture and 2 data sets derived from serum samples, from GC-MS and LC-MS respectively.

CONCLUSION

IP4M is powerful, modularized, customizable and easy-to-use. It is a good choice for metabolomics data processing and analysis. Free versions for Windows, MAC OS, and Linux systems are provided.

摘要

背景

代谢组学数据分析依赖于生物信息学工具的使用。许多针对非靶向代谢组学数据处理的集成多功能工具已经开发出来,并得到了广泛应用。无论是基础用户还是高级用户,都希望有更多的替代平台。

结果

设计和开发了基于集成质谱的非靶向代谢组学数据挖掘(IP4M)软件。IP4M 有 62 个功能,分为 8 个模块,涵盖了代谢组学数据挖掘的所有步骤,包括原始数据预处理(对齐、峰解卷积、峰提取和同位素过滤)、峰注释、峰表预处理、基本统计描述、分类和生物标志物检测、相关分析、聚类和子聚类分析、回归分析、ROC 分析、通路和富集分析以及样本量和功效分析。此外,还嵌入了一个源自 KEGG 的代谢反应数据库,可以生成一系列比率变量(产物/底物),并放大有关酶活性的信息。还提供了一种用于代谢组学和微生物组学数据相关性分析的新方法 GRaMM。IP4M 为专家用户提供了大量用于定制和精细化分析的参数,以及 4 个简化工作流程,这些工作流程的关键参数较少,适合不熟悉计算代谢组学的初学者。使用来自标准混合物和血清样本的 2 个 GC-MS 和 LC-MS 数据集,对 IP4M 的性能进行了评估,并与现有的计算平台进行了比较。

结论

IP4M 功能强大、模块化、可定制且易于使用。它是代谢组学数据处理和分析的不错选择。提供适用于 Windows、MAC OS 和 Linux 系统的免费版本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f89f/7542974/28880d2ee12e/12859_2020_3786_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验