Suppr超能文献

理解神经元通讯的早期步骤。

Early steps toward understanding neuronal communication.

机构信息

Department of Electrical and Computer Engineering, Carnegie Mellon University.

Department of Ophthalmology, Eye and Ear Institute.

出版信息

Curr Opin Neurol. 2018 Feb;31(1):59-65. doi: 10.1097/WCO.0000000000000512.

Abstract

PURPOSE OF REVIEW

The computational power of the brain arises from the complex interactions between neurons. One straightforward method to quantify the strength of neuronal interactions is by measuring correlation and coherence. Efforts to measure correlation have been advancing rapidly of late, spurred by the development of advanced recording technologies enabling recording from many neurons and brain areas simultaneously. This review highlights recent results that provide clues into the principles of neural coordination, connections to cognitive and neurological phenomena, and key directions for future research.

RECENT FINDINGS

The correlation structure of neural activity in the brain has important consequences for the encoding properties of neural populations. Recent studies have shown that this correlation structure is not fixed, but adapts in a variety of contexts in ways that appear beneficial to task performance. By studying these changes in biological neural networks and computational models, researchers have improved our understanding of the principles guiding neural communication.

SUMMARY

Correlation and coherence are highly informative metrics for studying coding and communication in the brain. Recent findings have emphasized how the brain modifies correlation structure dynamically in order to improve information-processing in a goal-directed fashion. One key direction for future research concerns how to leverage these dynamic changes for therapeutic purposes.

摘要

目的综述

大脑的计算能力源于神经元之间的复杂相互作用。一种衡量神经元相互作用强度的直接方法是测量相关性和相干性。由于先进的记录技术的发展,使得同时记录许多神经元和脑区成为可能,因此最近对相关性的测量取得了快速进展。本综述重点介绍了最近的研究结果,这些结果为神经协调的原则、与认知和神经现象的联系以及未来研究的关键方向提供了线索。

最近的发现

大脑中神经活动的相关结构对神经群体的编码特性有重要影响。最近的研究表明,这种相关结构不是固定的,而是以各种方式适应各种环境,这些方式似乎有利于任务表现。通过研究生物神经网络和计算模型中的这些变化,研究人员提高了我们对指导神经通讯的原则的理解。

总结

相关性和相干性是研究大脑编码和通讯的非常有信息量的指标。最近的发现强调了大脑如何动态地改变相关结构,以便以目标导向的方式改善信息处理。未来研究的一个关键方向是如何利用这些动态变化来达到治疗目的。

相似文献

1
Early steps toward understanding neuronal communication.理解神经元通讯的早期步骤。
Curr Opin Neurol. 2018 Feb;31(1):59-65. doi: 10.1097/WCO.0000000000000512.
2
Dynamic effective connectivity of inter-areal brain circuits.区域间脑回路的动态有效连通性。
PLoS Comput Biol. 2012;8(3):e1002438. doi: 10.1371/journal.pcbi.1002438. Epub 2012 Mar 22.
5
Inhibitory stabilization and cortical computation.抑制稳定和皮层计算。
Nat Rev Neurosci. 2021 Jan;22(1):21-37. doi: 10.1038/s41583-020-00390-z. Epub 2020 Nov 11.
7
Toward Principles of Brain Network Organization and Function.迈向脑网络组织与功能的原则
Annu Rev Biophys. 2025 May;54(1):353-378. doi: 10.1146/annurev-biophys-030722-110624. Epub 2025 Feb 14.

本文引用的文献

1
Population activity structure of excitatory and inhibitory neurons.兴奋性和抑制性神经元的群体活动结构
PLoS One. 2017 Aug 17;12(8):e0181773. doi: 10.1371/journal.pone.0181773. eCollection 2017.
5
Top-Down Beta Enhances Bottom-Up Gamma.自上而下的贝塔增强自下而上的伽马。
J Neurosci. 2017 Jul 12;37(28):6698-6711. doi: 10.1523/JNEUROSCI.3771-16.2017. Epub 2017 Jun 7.
8
Cholinergic shaping of neural correlations.胆碱能对神经相关性的塑造作用。
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5725-5730. doi: 10.1073/pnas.1621493114. Epub 2017 May 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验