Suppr超能文献

任务复杂性调节了经验决策中描述的影响。

Task complexity moderates the influence of descriptions in decisions from experience.

机构信息

Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.

Centre for Decision Research, University of Leeds, Leeds, UK; School of Psychology, University of New South Wales, Sydney, Australia.

出版信息

Cognition. 2018 Jan;170:209-227. doi: 10.1016/j.cognition.2017.10.005. Epub 2017 Nov 5.

Abstract

Decisions-makers often have access to a combination of descriptive and experiential information, but limited research so far has explored decisions made using both. Three experiments explore the relationship between task complexity and the influence of descriptions. We show that in simple experience-based decision-making tasks, providing congruent descriptions has little influence on task performance in comparison to experience alone without descriptions, since learning via experience is relatively easy. In more complex tasks, which are slower and more demanding to learn experientially, descriptions have stronger influence and help participants identify their preferred choices. However, when the task gets too complex to be concisely described, the influence of descriptions is reduced hence showing a non-monotonic pattern of influence of descriptions according to task complexity. We also propose a cognitive model that incorporates descriptive information into the traditional reinforcement learning framework, with the impact of descriptions moderated by task complexity. This model fits the observed behavior better than previous models and replicates the observed non-monotonic relationship between impact of descriptions and task complexity. This research has implications for the development of effective warning labels that rely on simple descriptive information to trigger safer behavior in complex environments.

摘要

决策者通常可以同时获得描述性和体验性信息,但到目前为止,有限的研究探索了同时使用这两种信息做出的决策。三项实验探讨了任务复杂性与描述影响之间的关系。我们表明,在简单的基于经验的决策任务中,与没有描述的仅经验相比,提供一致的描述对任务表现的影响很小,因为通过经验学习相对容易。在更复杂的任务中,经验学习速度较慢且要求较高,描述的影响更强,并帮助参与者识别他们更喜欢的选择。然而,当任务变得过于复杂而无法简洁地描述时,描述的影响会降低,因此根据任务复杂性显示出描述影响的非单调模式。我们还提出了一个认知模型,该模型将描述性信息纳入传统的强化学习框架中,描述的影响由任务复杂性来调节。该模型比以前的模型更能拟合观察到的行为,并且复制了描述影响与任务复杂性之间的观察到的非单调关系。这项研究对开发有效的警告标签具有启示意义,这些警告标签依赖于简单的描述性信息在复杂环境中触发更安全的行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验