Suppr超能文献

生物保护律作为动态神经元网络中的新兴功能。

Biological conservation law as an emerging functionality in dynamical neuronal networks.

机构信息

Center for Polymer Studies, Boston University, Boston, MA 02215;

Department of Physics, Boston University, Boston, MA 02215.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11826-11831. doi: 10.1073/pnas.1705704114. Epub 2017 Oct 24.

Abstract

Scientists strive to understand how functionalities, such as conservation laws, emerge in complex systems. Living complex systems in particular create high-ordered functionalities by pairing up low-ordered complementary processes, e.g., one process to build and the other to correct. We propose a network mechanism that demonstrates how collective statistical laws can emerge at a macro (i.e., whole-network) level even when they do not exist at a unit (i.e., network-node) level. Drawing inspiration from neuroscience, we model a highly stylized dynamical neuronal network in which neurons fire either randomly or in response to the firing of neighboring neurons. A synapse connecting two neighboring neurons strengthens when both of these neurons are excited and weakens otherwise. We demonstrate that during this interplay between the synaptic and neuronal dynamics, when the network is near a critical point, both recurrent spontaneous and stimulated phase transitions enable the phase-dependent processes to replace each other and spontaneously generate a statistical conservation law-the conservation of synaptic strength. This conservation law is an emerging functionality selected by evolution and is thus a form of biological self-organized criticality in which the key dynamical modes are collective.

摘要

科学家们努力理解功能(例如守恒定律)如何在复杂系统中出现。特别是,生命复杂系统通过将低阶互补过程配对来创造高阶有序功能,例如一个过程用于构建,另一个过程用于纠错。我们提出了一种网络机制,展示了即使在单元(即网络节点)级别不存在时,集体统计定律如何在宏观(即整个网络)级别上出现。受神经科学的启发,我们构建了一个高度风格化的动力神经元网络模型,其中神经元要么随机放电,要么响应相邻神经元的放电而放电。连接两个相邻神经元的突触在这两个神经元都被激发时增强,否则减弱。我们证明,在突触和神经元动力学的相互作用过程中,当网络接近临界点时,无论是自发的还是受刺激的循环相变都会使相依的过程相互替换,并自发地产生统计守恒定律——突触强度的守恒。这种守恒定律是进化选择的一种涌现功能,因此是一种生物自组织临界性形式,其中关键的动力学模式是集体的。

相似文献

1
Biological conservation law as an emerging functionality in dynamical neuronal networks.生物保护律作为动态神经元网络中的新兴功能。
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11826-11831. doi: 10.1073/pnas.1705704114. Epub 2017 Oct 24.
5
Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity.由脉冲时间依赖可塑性驱动的网络演化中的霍普夫分岔
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056103. doi: 10.1103/PhysRevE.86.056103. Epub 2012 Nov 6.
10

引用本文的文献

2
Robust Physiological Metrics From Sparsely Sampled Networks.从稀疏采样网络中获取稳健的生理指标
Front Physiol. 2021 Feb 10;12:624097. doi: 10.3389/fphys.2021.624097. eCollection 2021.
3
β Cells Operate Collectively to Help Maintain Glucose Homeostasis.β细胞协同运作以帮助维持葡萄糖稳态。
Biophys J. 2020 May 19;118(10):2588-2595. doi: 10.1016/j.bpj.2020.04.005. Epub 2020 Apr 15.

本文引用的文献

2
Model of brain activation predicts the neural collective influence map of the brain.模型的脑激活预测大脑的神经集体影响图。
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3849-3854. doi: 10.1073/pnas.1620808114. Epub 2017 Mar 28.
3
Beware of the Small-World Neuroscientist!小心这位“小世界”神经科学家!
Front Hum Neurosci. 2016 Mar 8;10:96. doi: 10.3389/fnhum.2016.00096. eCollection 2016.
5
The cost of attack in competing networks.竞争网络中的攻击成本。
J R Soc Interface. 2015 Nov 6;12(112). doi: 10.1098/rsif.2015.0770.
7
Brain state dependent activity in the cortex and thalamus.大脑皮质和丘脑的状态依赖性活动。
Curr Opin Neurobiol. 2015 Apr;31:133-40. doi: 10.1016/j.conb.2014.10.003. Epub 2014 Oct 22.
8
Modern network science of neurological disorders.神经系统疾病的现代网络科学。
Nat Rev Neurosci. 2014 Oct;15(10):683-95. doi: 10.1038/nrn3801. Epub 2014 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验