Suppr超能文献

人类驱动蛋白-8 功能和抑制的结构基础。

Structural basis of human kinesin-8 function and inhibition.

机构信息

Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, WC1E 7HX, United Kingdom.

Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9539-E9548. doi: 10.1073/pnas.1712169114. Epub 2017 Oct 23.

Abstract

Kinesin motors play diverse roles in mitosis and are targets for antimitotic drugs. The clinical significance of these motors emphasizes the importance of understanding the molecular basis of their function. Equally important, investigations into the modes of inhibition of these motors provide crucial information about their molecular mechanisms. Kif18A regulates spindle microtubules through its dual functionality, with microtubule-based stepping and regulation of microtubule dynamics. We investigated the mechanism of Kif18A and its inhibition by the small molecule BTB-1. The Kif18A motor domain drives ATP-dependent plus-end microtubule gliding, and undergoes conformational changes consistent with canonical mechanisms of plus-end-directed motility. The Kif18A motor domain also depolymerizes microtubule plus and minus ends. BTB-1 inhibits both of these microtubule-based Kif18A activities. A reconstruction of BTB-1-bound, microtubule-bound Kif18A, in combination with computational modeling, identified an allosteric BTB-1-binding site near loop5, where it blocks the ATP-dependent conformational changes that we characterized. Strikingly, BTB-1 binding is close to that of well-characterized Kif11 inhibitors that block tight microtubule binding, whereas BTB-1 traps Kif18A on the microtubule. Our work highlights a general mechanism of kinesin inhibition in which small-molecule binding near loop5 prevents a range of conformational changes, blocking motor function.

摘要

驱动蛋白在有丝分裂中发挥多种作用,是抗有丝分裂药物的靶点。这些马达的临床意义强调了理解其功能分子基础的重要性。同样重要的是,对这些马达抑制模式的研究提供了关于其分子机制的关键信息。Kif18A 通过其双重功能调节纺锤体微管,具有基于微管的步进和微管动力学的调节。我们研究了 Kif18A 的机制及其被小分子 BTB-1 的抑制作用。Kif18A 马达结构域驱动 ATP 依赖性正极微管滑行,并经历与正极定向运动的典型机制一致的构象变化。Kif18A 马达结构域还使微管的正极和负极解聚。BTB-1 抑制这两种基于微管的 Kif18A 活性。与计算建模相结合,对 BTB-1 结合的、微管结合的 Kif18A 的重建,确定了一个变构的 BTB-1 结合位点,位于环 5 附近,它阻止了我们所描述的 ATP 依赖性构象变化。引人注目的是,BTB-1 的结合位置接近那些能紧密结合微管的、已充分表征的 Kif11 抑制剂,而 BTB-1 将 Kif18A 捕获在微管上。我们的工作强调了一种驱动蛋白抑制的一般机制,其中小分子在环 5 附近的结合阻止了一系列构象变化,从而阻断了马达功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e254/5692573/c853ef124f70/pnas.1712169114fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验