Suppr超能文献

利用细菌细胞的周质空间开发用于高纯度化学品生物合成的生物催化剂。

Harnessing the Periplasm of Bacterial Cells To Develop Biocatalysts for the Biosynthesis of Highly Pure Chemicals.

机构信息

School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, People's Republic of China.

School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.

出版信息

Appl Environ Microbiol. 2017 Dec 15;84(1). doi: 10.1128/AEM.01693-17. Print 2018 Jan 1.

Abstract

Although biocatalytic transformation has shown great promise in chemical synthesis, there remain significant challenges in controlling high selectivity without the formation of undesirable by-products. For instance, few attempts to construct biocatalysts for synthesis of pure flavin mononucleotide (FMN) have been successful, due to riboflavin (RF) accumulating in the cytoplasm and being secreted with FMN. To address this problem, we show here a novel biosynthesis strategy, compartmentalizing the final FMN biosynthesis step in the periplasm of an engineered strain. This construct is able to overproduce FMN with high specificity (92.4% of total excreted flavins). Such a biosynthesis approach allows isolation of the final biosynthesis step from the cytoplasm to eliminate undesirable by-products, providing a new route to develop biocatalysts for the synthesis of high-purity chemicals. The periplasm of Gram-negative bacterial hosts is engineered to compartmentalize the final biosynthesis step from the cytoplasm. This strategy is promising for the overproduction of high-value products with high specificity. We demonstrate the successful implementation of this strategy in microbial production of highly pure FMN.

摘要

尽管生物催化转化在化学合成中显示出巨大的潜力,但在不形成不需要的副产物的情况下控制高选择性仍然存在重大挑战。例如,由于核黄素(RF)在细胞质中积累并与 FMN 一起分泌,因此很少有尝试构建用于合成纯黄素单核苷酸(FMN)的生物催化剂的成功。为了解决这个问题,我们在这里展示了一种新颖的生物合成策略,即将最终的 FMN 生物合成步骤分隔在工程菌株的周质中。该构建体能够以高特异性(总分泌黄素的 92.4%)过量生产 FMN。这种生物合成方法可以将最终的生物合成步骤从细胞质中分离出来以消除不需要的副产物,为开发用于合成高纯度化学品的生物催化剂提供了新途径。革兰氏阴性细菌宿主的周质被工程化以将最终的生物合成步骤与细胞质分隔开。该策略有望用于高特异性的高价值产品的过量生产。我们证明了该策略在微生物生产高纯度 FMN 中的成功实施。

相似文献

1
Harnessing the Periplasm of Bacterial Cells To Develop Biocatalysts for the Biosynthesis of Highly Pure Chemicals.
Appl Environ Microbiol. 2017 Dec 15;84(1). doi: 10.1128/AEM.01693-17. Print 2018 Jan 1.
2
YeeO from Escherichia coli exports flavins.
Bioengineered. 2014;5(6):386-92. doi: 10.4161/21655979.2014.969173. Epub 2014 Nov 11.
3
Cofactor trapping, a new method to produce flavin mononucleotide.
Appl Environ Microbiol. 2011 Feb;77(3):1097-100. doi: 10.1128/AEM.01541-10. Epub 2010 Dec 3.
4
Modular Engineering of the Flavin Pathway in Escherichia coli for Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide Production.
J Agric Food Chem. 2019 Jun 12;67(23):6532-6540. doi: 10.1021/acs.jafc.9b02646. Epub 2019 Jun 3.
8
Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
Protein Eng Des Sel. 2013 Dec;26(12):791-5. doi: 10.1093/protein/gzt055. Epub 2013 Oct 29.
10
Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.
Cell Chem Biol. 2017 May 18;24(5):576-588.e6. doi: 10.1016/j.chembiol.2017.03.014. Epub 2017 Apr 20.

引用本文的文献

1
Multichannel bioelectronic sensing using engineered Escherichia coli.
Nat Commun. 2025 Jul 29;16(1):6953. doi: 10.1038/s41467-025-62256-1.
2
Cooperative microbial interactions drive spatial segregation in porous environments.
Nat Commun. 2023 Jul 15;14(1):4226. doi: 10.1038/s41467-023-39991-4.
3
Production of riboflavin and related cofactors by biotechnological processes.
Microb Cell Fact. 2020 Feb 13;19(1):31. doi: 10.1186/s12934-020-01302-7.

本文引用的文献

1
A biomimetic redox flow battery based on flavin mononucleotide.
Nat Commun. 2016 Oct 21;7:13230. doi: 10.1038/ncomms13230.
2
Metabolic engineering of Escherichia coli for microbial production of L-methionine.
Biotechnol Bioeng. 2017 Apr;114(4):843-851. doi: 10.1002/bit.26198. Epub 2016 Oct 21.
3
Metabolic engineering of Escherichia coli W3110 to produce L-malate.
Biotechnol Bioeng. 2017 Mar;114(3):656-664. doi: 10.1002/bit.26190. Epub 2016 Oct 17.
4
Enhancing fatty acid production in Escherichia coli by Vitreoscilla hemoglobin overexpression.
Biotechnol Bioeng. 2017 Feb;114(2):463-467. doi: 10.1002/bit.26067. Epub 2016 Aug 17.
6
New and improved tools and methods for enhanced biosynthesis of natural products in microorganisms.
Curr Opin Biotechnol. 2016 Dec;42:159-168. doi: 10.1016/j.copbio.2016.05.003. Epub 2016 Jun 7.
8
Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications.
Trends Biotechnol. 2016 Aug;34(8):652-664. doi: 10.1016/j.tibtech.2016.02.010. Epub 2016 Mar 18.
9
Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae.
Biotechnol Bioeng. 2017 Jan;114(1):232-237. doi: 10.1002/bit.25920. Epub 2016 Jan 19.
10
Systems strategies for developing industrial microbial strains.
Nat Biotechnol. 2015 Oct;33(10):1061-72. doi: 10.1038/nbt.3365.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验