Suppr超能文献

利用移动热成像技术在高动态范围场景中稳健跟踪呼吸频率。

Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging.

作者信息

Cho Youngjun, Julier Simon J, Marquardt Nicolai, Bianchi-Berthouze Nadia

机构信息

Interaction Centre, Faculty of Brain Sciences, University College London, London, WC1E 6BT, UK.

Department of Computer Science, University College London, London, WC1E 6BT, UK.

出版信息

Biomed Opt Express. 2017 Sep 13;8(10):4480-4503. doi: 10.1364/BOE.8.004480. eCollection 2017 Oct 1.

Abstract

The ability to monitor the respiratory rate, one of the vital signs, is extremely important for the medical treatment, healthcare and fitness sectors. In many situations, mobile methods, which allow users to undertake everyday activities, are required. However, current monitoring systems can be obtrusive, requiring users to wear respiration belts or nasal probes. Alternatively, contactless digital image sensor based remote-photoplethysmography (PPG) can be used. However, remote PPG requires an ambient source of light, and does not work properly in dark places or under varying lighting conditions. Recent advances in thermographic systems have shrunk their size, weight and cost, to the point where it is possible to create smart-phone based respiration rate monitoring devices that are not affected by lighting conditions. However, mobile thermal imaging is challenged in scenes with high thermal dynamic ranges (e.g. due to the different environmental temperature distributions indoors and outdoors). This challenge is further amplified by general problems such as motion artifacts and low spatial resolution, leading to unreliable breathing signals. In this paper, we propose a novel and robust approach for respiration tracking which compensates for the negative effects of variations in the ambient temperature and motion artifacts and can accurately extract breathing rates in highly dynamic thermal scenes. The approach is based on tracking the nostril of the user and using local temperature variations to infer inhalation and exhalation cycles. It has three main contributions. The first is a novel technique which adaptively constructs a color mapping of absolute temperature to improve segmentation, classification and tracking. The second is the method that computes thermal gradient magnitude maps to enhance the accuracy of the nostril region tracking. Finally, we introduce the method to increase the reliability of the captured respiration signals compared to the traditional averaging method. We demonstrate the extreme robustness of our system to track the nostril-region and measure the respiratory rate by evaluating it during controlled respiration exercises in high thermal dynamic scenes (e.g. strong correlation (r = 0.9987) with the ground truth from the respiration-belt sensor). We also demonstrate how our algorithm outperformed standard algorithms in settings with different amounts of environmental thermal changes and human motion. We open the tracked ROI sequences of the datasets collected for these studies (i.e. under both controlled and unconstrained real-world settings) to the community to foster work in this area.

摘要

监测呼吸频率这一生命体征的能力,对医疗、保健和健身领域极为重要。在许多情况下,需要采用能让用户进行日常活动的移动监测方法。然而,当前的监测系统可能会造成干扰,要求用户佩戴呼吸带或鼻探头。或者,可以使用基于非接触式数字图像传感器的远程光电容积脉搏波描记法(PPG)。不过,远程PPG需要有环境光源,在黑暗场所或光照条件变化时无法正常工作。热成像系统的最新进展已减小了其尺寸、重量和成本,使得创建不受光照条件影响的基于智能手机的呼吸频率监测设备成为可能。然而,在具有高热动态范围的场景中(例如由于室内和室外不同的环境温度分布),移动热成像面临挑战。诸如运动伪影和低空间分辨率等常见问题进一步加剧了这一挑战,导致呼吸信号不可靠。在本文中,我们提出了一种新颖且稳健的呼吸跟踪方法,该方法可补偿环境温度变化和运动伪影的负面影响,并能在高动态热场景中准确提取呼吸频率。该方法基于跟踪用户的鼻孔,并利用局部温度变化来推断吸气和呼气周期。它有三个主要贡献。第一个是一种新颖的技术,可自适应构建绝对温度的颜色映射,以改善分割、分类和跟踪。第二个是计算热梯度幅值图的方法,以提高鼻孔区域跟踪的准确性。最后,我们引入一种方法,与传统的平均方法相比,可提高捕获的呼吸信号的可靠性。我们通过在高热动态场景中的受控呼吸练习期间对其进行评估,展示了我们的系统在跟踪鼻孔区域和测量呼吸频率方面的极强稳健性(例如与呼吸带传感器的地面真值具有强相关性(r = 0.9987))。我们还展示了在不同环境热变化量和人体运动的设置中,我们的算法如何优于标准算法。我们向社区开放为这些研究收集的数据集的跟踪感兴趣区域(ROI)序列(即在受控和无约束的现实世界设置下),以促进该领域的工作。

相似文献

1
Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging.
Biomed Opt Express. 2017 Sep 13;8(10):4480-4503. doi: 10.1364/BOE.8.004480. eCollection 2017 Oct 1.
3
DistancePPG: Robust non-contact vital signs monitoring using a camera.
Biomed Opt Express. 2015 Apr 6;6(5):1565-88. doi: 10.1364/BOE.6.001565. eCollection 2015 May 1.
5
Comparison of motion-based analysis to thermal-based analysis of thermal video in the extraction of respiration patterns.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3835-3839. doi: 10.1109/EMBC.2017.8037693.
9
Robust motion tracking in liver from 2D ultrasound images using supporters.
Int J Comput Assist Radiol Surg. 2017 Jun;12(6):941-950. doi: 10.1007/s11548-017-1559-8. Epub 2017 Mar 22.
10
Stable Contactless Sensing of Vital Signs Using RGB-Thermal Image Fusion System with Facial Tracking for Infection Screening.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4371-4374. doi: 10.1109/EMBC.2018.8513300.

引用本文的文献

1
2
Thermal imaging-based core peripheral temperature difference measurement for neonatal monitoring in the NICU.
Biomed Opt Express. 2025 Feb 10;16(3):965-981. doi: 10.1364/BOE.549693. eCollection 2025 Mar 1.
4
Thermal Cameras for Continuous and Contactless Respiration Monitoring.
Sensors (Basel). 2024 Dec 19;24(24):8118. doi: 10.3390/s24248118.
5
Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement.
Front Bioeng Biotechnol. 2024 Jul 17;12:1420100. doi: 10.3389/fbioe.2024.1420100. eCollection 2024.
6
Recent advances in wearable sensors and data analytics for continuous monitoring and analysis of biomarkers and symptoms related to COVID-19.
Biophys Rev (Melville). 2023 Jul 19;4(3):031302. doi: 10.1063/5.0140900. eCollection 2023 Sep.
7
Detection of Respiratory Infections Using RGB-Infrared Sensors on Portable Device.
IEEE Sens J. 2020 Jun 24;20(22):13674-13681. doi: 10.1109/JSEN.2020.3004568. eCollection 2020 Nov 15.
9
Thermal Image Processing for Respiratory Estimation from Cubical Data with Expandable Depth.
J Imaging. 2023 Sep 13;9(9):184. doi: 10.3390/jimaging9090184.
10
A Low-Cost Flexible Perforated Respiratory Sensor Based on Platinum for Continuous Respiratory Monitoring.
Micromachines (Basel). 2022 Oct 14;13(10):1743. doi: 10.3390/mi13101743.

本文引用的文献

1
Robust respiration detection from remote photoplethysmography.
Biomed Opt Express. 2016 Nov 3;7(12):4941-4957. doi: 10.1364/BOE.7.004941. eCollection 2016 Dec 1.
2
Remote monitoring of breathing dynamics using infrared thermography.
Biomed Opt Express. 2015 Oct 16;6(11):4378-94. doi: 10.1364/BOE.6.004378. eCollection 2015 Nov 1.
3
DistancePPG: Robust non-contact vital signs monitoring using a camera.
Biomed Opt Express. 2015 Apr 6;6(5):1565-88. doi: 10.1364/BOE.6.001565. eCollection 2015 May 1.
4
Robust efficient estimation of heart rate pulse from video.
Biomed Opt Express. 2014 Mar 10;5(4):1124-35. doi: 10.1364/BOE.5.001124. eCollection 2014 Apr 1.
5
Exploring the use of thermal infrared imaging in human stress research.
PLoS One. 2014 Mar 27;9(3):e90782. doi: 10.1371/journal.pone.0090782. eCollection 2014.
6
Robust inter-beat interval estimation in cardiac vibration signals.
Physiol Meas. 2013 Feb;34(2):123-38. doi: 10.1088/0967-3334/34/2/123. Epub 2013 Jan 23.
7
Neonatal non-contact respiratory monitoring based on real-time infrared thermography.
Biomed Eng Online. 2011 Oct 20;10:93. doi: 10.1186/1475-925X-10-93.
8
Robust visual tracking and vehicle classification via sparse representation.
IEEE Trans Pattern Anal Mach Intell. 2011 Nov;33(11):2259-72. doi: 10.1109/TPAMI.2011.66.
9
A novel method for extracting respiration rate and relative tidal volume from infrared thermography.
Psychophysiology. 2011 Jul;48(7):877-87. doi: 10.1111/j.1469-8986.2010.01167.x. Epub 2011 Jan 7.
10
Advancements in noncontact, multiparameter physiological measurements using a webcam.
IEEE Trans Biomed Eng. 2011 Jan;58(1):7-11. doi: 10.1109/TBME.2010.2086456. Epub 2010 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验