Suppr超能文献

一种快速自动检测脑部病变的方法。

A Fast Approach to Automatic Detection of Brain Lesions.

作者信息

Koley Subhranil, Chakraborty Chandan, Mainero Caterina, Fischl Bruce, Aganj Iman

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Charlestown, MA, USA.

School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India 721302.

出版信息

Brainlesion. 2016;10154:52-61. doi: 10.1007/978-3-319-55524-9_6. Epub 2017 Apr 12.

Abstract

Template matching is a popular approach to computer-aided detection of brain lesions from magnetic resonance (MR) images. The outcomes are often sufficient for localizing lesions and assisting clinicians in diagnosis. However, processing large MR volumes with three-dimensional (3D) templates is demanding in terms of computational resources, hence the importance of the reduction of computational complexity of template matching, particularly in situations in which time is crucial (e.g. emergent stroke). In view of this, we make use of 3D Gaussian templates with varying radii and propose a new method to compute the normalized cross-correlation coefficient as a similarity metric between the MR volume and the template to detect brain lesions. Contrary to the conventional fast Fourier transform (FFT) based approach, whose runtime grows as ( log) with the number of voxels, the proposed method computes the cross-correlation in (). We show through our experiments that the proposed method outperforms the FFT approach in terms of computational time, and retains comparable accuracy.

摘要

模板匹配是一种从磁共振(MR)图像中进行脑病变计算机辅助检测的常用方法。其结果通常足以定位病变并协助临床医生进行诊断。然而,使用三维(3D)模板处理大量MR数据在计算资源方面要求很高,因此降低模板匹配计算复杂度非常重要,特别是在时间至关重要的情况下(例如急性中风)。有鉴于此,我们使用具有不同半径的3D高斯模板,并提出一种新方法来计算归一化互相关系数,作为MR数据与模板之间的相似性度量,以检测脑病变。与传统的基于快速傅里叶变换(FFT)的方法不同,传统方法的运行时间随体素数量呈(对数)增长,而所提出的方法在(线性)时间内计算互相关。我们通过实验表明,所提出的方法在计算时间方面优于FFT方法,并且保持了相当的准确性。

相似文献

1
A Fast Approach to Automatic Detection of Brain Lesions.一种快速自动检测脑部病变的方法。
Brainlesion. 2016;10154:52-61. doi: 10.1007/978-3-319-55524-9_6. Epub 2017 Apr 12.

本文引用的文献

5
Lung nodule diagnosis using 3D template matching.使用三维模板匹配进行肺结节诊断。
Comput Biol Med. 2007 Aug;37(8):1167-72. doi: 10.1016/j.compbiomed.2006.10.007. Epub 2006 Dec 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验