Suppr超能文献

健康意义与统计不确定性。P值的价值。

Health significance and statistical uncertainty. The value of P-value.

作者信息

Consonni Dario, Bertazzi Pier Alberto

机构信息

UO Epidemiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via san Barnaba, 8 - 20122 Milano.

出版信息

Med Lav. 2017 Oct 27;108(5):327-31. doi: 10.23749/mdl.v108i5.6603.

Abstract

BACKGROUND

The P-value is widely used as a summary statistics of scientific results. Unfortunately, there is a widespread tendency to dichotomize its value in "P<0.05" (defined as "statistically significant") and "P>0.05" ("statistically not significant"), with the former implying a "positive" result and the latter a "negative" one.

OBJECTIVE

To show the unsuitability of such an approach when evaluating the effects of environmental and occupational risk factors.

METHODS

We provide examples of distorted use of P-value and of the negative consequences for science and public health of such a black-and-white vision.

RESULTS

The rigid interpretation of P-value as a dichotomy favors the confusion between health relevance and statistical significance, discourages thoughtful thinking, and distorts attention from what really matters, the health significance.

DISCUSSION

A much better way to express and communicate scientific results involves reporting effect estimates (e.g., risks, risks ratios or risk differences) and their confidence intervals (CI), which summarize and convey both health significance and statistical uncertainty. Unfortunately, many researchers do not usually consider the whole interval of CI but only examine if it includes the null-value, therefore degrading this procedure to the same P-value dichotomy (statistical significance or not).

CONCLUSIONS

In reporting statistical results of scientific research present effects estimates with their confidence intervals and do not qualify the P-value as "significant" or "not significant".

摘要

背景

P值被广泛用作科学研究结果的汇总统计量。不幸的是,普遍存在一种将其值二分法为“P<0.05”(定义为“具有统计学显著性”)和“P>0.05”(“无统计学显著性”)的趋势,前者意味着“阳性”结果,后者意味着“阴性”结果。

目的

表明在评估环境和职业风险因素的影响时,这种方法是不合适的。

方法

我们提供了P值使用不当的例子,以及这种黑白分明观点对科学和公共卫生造成的负面后果。

结果

将P值严格解释为二分法有利于混淆健康相关性和统计学显著性,阻碍深入思考,并扭曲对真正重要的健康显著性的关注。

讨论

表达和交流科学研究结果的更好方法是报告效应估计值(例如,风险、风险比或风险差)及其置信区间(CI),它们总结并传达了健康显著性和统计不确定性。不幸的是,许多研究人员通常不考虑CI的整个区间,而只检查它是否包含零值,因此将这个过程降级为相同的P值二分法(有无统计学显著性)。

结论

在报告科学研究的统计结果时,应呈现效应估计值及其置信区间,而不要将P值定性为“显著”或“不显著”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验