Suppr超能文献

统计学意义与临床意义。

Statistical significance versus clinical relevance.

机构信息

Department of Nephrology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

Centre for Research in Epidemiology and Population Health, CESP, Université Paris-Saclay, Université Paris-Sud, UVSQ, Inserm, Villejuif, France.

出版信息

Nephrol Dial Transplant. 2017 Apr 1;32(suppl_2):ii6-ii12. doi: 10.1093/ndt/gfw385.

Abstract

In March this year, the American Statistical Association (ASA) posted a statement on the correct use of P-values, in response to a growing concern that the P-value is commonly misused and misinterpreted. We aim to translate these warnings given by the ASA into a language more easily understood by clinicians and researchers without a deep background in statistics. Moreover, we intend to illustrate the limitations of P-values, even when used and interpreted correctly, and bring more attention to the clinical relevance of study findings using two recently reported studies as examples. We argue that P-values are often misinterpreted. A common mistake is saying that P < 0.05 means that the null hypothesis is false, and P ≥0.05 means that the null hypothesis is true. The correct interpretation of a P-value of 0.05 is that if the null hypothesis were indeed true, a similar or more extreme result would occur 5% of the times upon repeating the study in a similar sample. In other words, the P-value informs about the likelihood of the data given the null hypothesis and not the other way around. A possible alternative related to the P-value is the confidence interval (CI). It provides more information on the magnitude of an effect and the imprecision with which that effect was estimated. However, there is no magic bullet to replace P-values and stop erroneous interpretation of scientific results. Scientists and readers alike should make themselves familiar with the correct, nuanced interpretation of statistical tests, P-values and CIs.

摘要

今年 3 月,美国统计协会(ASA)发布了一份关于正确使用 P 值的声明,以回应人们越来越关注的一个问题,即 P 值普遍被误用和误解。我们的目标是将 ASA 提出的这些警告翻译成更易于临床医生和研究人员理解的语言,而无需他们具备统计学方面的深厚背景。此外,我们还打算举例说明即使正确使用和解释 P 值也存在局限性,并通过最近报告的两项研究来引起人们对研究结果临床相关性的更多关注。我们认为 P 值经常被误解。一个常见的错误是说 P<0.05 意味着零假设是错误的,而 P≥0.05 意味着零假设是正确的。0.05 的 P 值的正确解释是,如果零假设确实成立,那么在类似的样本中重复进行该研究时,出现类似或更极端结果的可能性为 5%。换句话说,P 值是根据零假设给出数据的可能性,而不是相反。与 P 值相关的一个可能替代指标是置信区间(CI)。它提供了有关效应大小和估计该效应的不准确性的更多信息。然而,没有一种神奇的方法可以替代 P 值并阻止对科学结果的错误解释。科学家和读者都应该熟悉正确的、细微差别的统计检验、P 值和 CI 的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验