UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK.
Nat Commun. 2017 Oct 30;8(1):1191. doi: 10.1038/s41467-017-01222-y.
The nuclease-deactivated variant of CRISPR-Cas9 proteins (dCas9) fused to heterologous transactivation domains can act as a potent guide RNA sequence-directed inducer or repressor of gene expression in mammalian cells. In such a system the long-term presence of a stable dCas9 effector can be a draw-back precluding the ability to switch rapidly between repressed and activated target gene expression states, imposing a static environment on the synthetic regulatory circuits in the cell. To address this issue we have generated a toolkit of conditionally degradable or stabilisable orthologous dCas9 or Cpf1 effector proteins, thus opening options for multidimensional control of functional activities through combinations of orthogonal, drug-tunable artificial transcription factors.
核酸酶失活的 CRISPR-Cas9 蛋白(dCas9)与异源转录激活结构域融合,可以在哺乳动物细胞中作为一种有效的指导 RNA 序列导向的基因表达诱导物或抑制剂。在这样的系统中,稳定的 dCas9 效应物的长期存在可能是一个缺点,因为它排除了快速在抑制和激活靶基因表达状态之间切换的能力,从而对细胞中的合成调控回路施加了静态环境。为了解决这个问题,我们已经生成了一组条件可降解或稳定的同源 dCas9 或 Cpf1 效应蛋白工具包,从而为通过正交、药物可调的人工转录因子的组合对功能活性进行多维控制提供了选择。