Babenko Vitaliy, Lane George, Koos Antal A, Murdock Adrian T, So Karwei, Britton Jude, Meysami Seyyed Shayan, Moffat Jonathan, Grobert Nicole
Department of Materials, University of Oxford, Oxford, OX1 3PH, UK.
Centre for Advanced Photonics and Electronics, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK.
Sci Rep. 2017 Oct 30;7(1):14297. doi: 10.1038/s41598-017-14663-8.
Ammonia borane (AB) is among the most promising precursors for the large-scale synthesis of hexagonal boron nitride (h-BN) by chemical vapour deposition (CVD). Its non-toxic and non-flammable properties make AB particularly attractive for industry. AB decomposition under CVD conditions, however, is complex and hence has hindered tailored h-BN production and its exploitation. To overcome this challenge, we report in-depth decomposition studies of AB under industrially safe growth conditions. In situ mass spectrometry revealed a time and temperature-dependent release of a plethora of NB-containing species and, as a result, significant changes of the N:B ratio during h-BN synthesis. Such fluctuations strongly influence the formation and morphology of 2D h-BN. By means of in situ gas monitoring and regulating the precursor temperature over time we achieve uniform release of volatile chemical species over many hours for the first time, paving the way towards the controlled, industrially viable production of h-BN.
氨硼烷(AB)是通过化学气相沉积(CVD)大规模合成六方氮化硼(h-BN)最有前景的前驱体之一。其无毒且不可燃的特性使AB对工业特别具有吸引力。然而,AB在CVD条件下的分解很复杂,因此阻碍了定制h-BN的生产及其开发利用。为了克服这一挑战,我们报告了在工业安全生长条件下对AB进行的深入分解研究。原位质谱分析揭示了大量含氮硼物种随时间和温度的释放情况,结果在h-BN合成过程中N:B比发生了显著变化。这种波动强烈影响二维h-BN的形成和形态。通过原位气体监测以及随时间调节前驱体温度,我们首次实现了挥发性化学物种在数小时内的均匀释放,为h-BN的可控、工业可行生产铺平了道路。