Suppr超能文献

[具体微生物名称]和[具体微生物名称]发酵对油菜花粉形态及其花粉壁的影响。 (注:原文中“by and ”处信息不完整,需补充具体微生物名称才能准确完整翻译)

Effects of fermentation by and on rape pollen morphology and its wall.

作者信息

Zhang Zheng, Cao Honggang, Chen Chao, Chen Xiao, Wei Qi, Zhao Fengyun

机构信息

College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070 China.

College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642 China.

出版信息

J Food Sci Technol. 2017 Nov;54(12):4026-4034. doi: 10.1007/s13197-017-2868-1. Epub 2017 Sep 19.

Abstract

This study investigated the mechanism of wall rupture fermentation of the rape bee pollen by and . The enzymatic activities and broken-wall ratios were determined, and the results suggested the involvement of cellulase, protease, and pectinase in the wall rupture fermentation. Among the five substrate inducers, CMCase, protease, and pectinase had the highest enzymatic activities at 23.13 ± 1.09, 63.44 ± 1.35, and 118.61 ± 2.07 U/mL, respectively. The broken-wall ratios of and were 85.08 ± 3.92 and 88.31 ± 2.51%, respectively. The wall rupture of rape pollen was closely related to the enzymes of the fermenting species. The wall rupture process was determined through enzyme assay, light microscopy, and scanning electron microscopy, and the broken-wall ratios provide further information on the said mechanism. The process follows three steps, namely, removal of coating on the pollen surface, continuous opening of three germinal apertures to allow enzymatic breakdown of the intine, and release of contents from the degradation of the exine.

摘要

本研究调查了[具体菌种1]和[具体菌种2]对油菜蜂花粉进行破壁发酵的机制。测定了酶活性和破壁率,结果表明纤维素酶、蛋白酶和果胶酶参与了破壁发酵过程。在五种底物诱导剂中,羧甲基纤维素酶(CMCase)、蛋白酶和果胶酶的酶活性最高,分别为23.13±1.09、63.44±1.35和118.61±2.07 U/mL。[具体菌种1]和[具体菌种2]的破壁率分别为85.08±3.92%和88.31±2.51%。油菜花粉的破壁与发酵菌种的酶密切相关。通过酶活性测定、光学显微镜和扫描电子显微镜确定了破壁过程,破壁率为该机制提供了进一步的信息。该过程包括三个步骤,即去除花粉表面的包膜、三个萌发孔持续打开以使内壁被酶分解,以及外壁降解后内容物的释放。

相似文献

1
Effects of fermentation by and on rape pollen morphology and its wall.
J Food Sci Technol. 2017 Nov;54(12):4026-4034. doi: 10.1007/s13197-017-2868-1. Epub 2017 Sep 19.
2
Cell Wall Disruption of Rape Bee Pollen Treated with Combination of Protamex Hydrolysis and Ultrasonication.
Food Res Int. 2015 Sep;75:123-130. doi: 10.1016/j.foodres.2015.05.039. Epub 2015 May 29.
3
New trends in Passiflora L. pollen grains: morphological/aperture aspects and wall layer considerations.
Protoplasma. 2019 Jul;256(4):923-939. doi: 10.1007/s00709-019-01350-w. Epub 2019 Feb 4.
4
Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.
Spectrochim Acta A Mol Biomol Spectrosc. 2012 Nov;97:667-72. doi: 10.1016/j.saa.2012.07.046. Epub 2012 Jul 22.
6
Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers.
J Basic Microbiol. 2019 Aug;59(8):784-791. doi: 10.1002/jobm.201900084. Epub 2019 Jul 1.
7
Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition.
Antonie Van Leeuwenhoek. 2015 Nov;108(5):1239-56. doi: 10.1007/s10482-015-0578-0. Epub 2015 Sep 19.
9
Multi-enzyme production by pure and mixed cultures of Saccharomyces and non-Saccharomyces yeasts during wine fermentation.
Int J Food Microbiol. 2012 Apr 2;155(1-2):43-50. doi: 10.1016/j.ijfoodmicro.2012.01.015. Epub 2012 Jan 26.
10
Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum.
Mycobiology. 2011 Jun;39(2):118-20. doi: 10.4489/MYCO.2011.39.2.118. Epub 2011 Jun 16.

引用本文的文献

1
Effects of synergistic fermentation of tea bee pollen with bacteria and enzymes on growth and intestinal health of .
Curr Res Microb Sci. 2025 Jan 16;8:100343. doi: 10.1016/j.crmicr.2025.100343. eCollection 2025.
3
Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview.
Front Nutr. 2022 Apr 27;9:871896. doi: 10.3389/fnut.2022.871896. eCollection 2022.
4
A Combined Proteomic and Metabolomic Strategy for Allergens Characterization in Natural and Fermented Bee Pollen.
Front Nutr. 2022 Jan 28;9:822033. doi: 10.3389/fnut.2022.822033. eCollection 2022.
7
Lactic Acid Fermentation to Re-cycle Apple By-Products for Wheat Bread Fortification.
Front Microbiol. 2019 Nov 6;10:2574. doi: 10.3389/fmicb.2019.02574. eCollection 2019.
8
Characteristics Analysis Reveals the Progress of Mycelium Subculture Degeneration.
Front Microbiol. 2019 Sep 3;10:2045. doi: 10.3389/fmicb.2019.02045. eCollection 2019.

本文引用的文献

1
Chemical characterization and antitumor activities of polysaccharide extracted from Ganoderma lucidum.
Int J Mol Sci. 2014 May 22;15(5):9103-16. doi: 10.3390/ijms15059103.
3
Variability in intra-specific and monosporous isolates of Volvariella volvacea based on enzyme activity, ITS and RAPD.
Indian J Microbiol. 2010 Jun;50(2):192-8. doi: 10.1007/s12088-010-0031-z. Epub 2010 Mar 16.
5
Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides.
Curr Microbiol. 2008 Nov;57(5):454-62. doi: 10.1007/s00284-008-9233-6. Epub 2008 Sep 16.
6
Pretreatments to enhance the digestibility of lignocellulosic biomass.
Bioresour Technol. 2009 Jan;100(1):10-8. doi: 10.1016/j.biortech.2008.05.027. Epub 2008 Jul 2.
7
Pollen wall development in flowering plants.
New Phytol. 2007;174(3):483-498. doi: 10.1111/j.1469-8137.2007.02060.x.
8
Characteristics of an aminopeptidase from Japanese cedar (Cryptomeria japonica) pollen.
J Agric Food Chem. 2005 Jun 29;53(13):5445-8. doi: 10.1021/jf047794b.
9
Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content.
Appl Biochem Biotechnol. 2005 Spring;121-124:1069-79. doi: 10.1385/abab:124:1-3:1069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验