Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12132-12137. doi: 10.1073/pnas.1711972114. Epub 2017 Oct 27.
Buckminsterfullerene (C) represents a perfect combination of geometry and molecular structural chemistry. It has inspired many creative ideas for building fullerene-like nanopolyhedra. These include other fullerenes, virus capsids, polyhedra based on DNA, and synthetic polynuclear metal clusters and cages. Indeed, the regular organization of large numbers of metal atoms into one highly complex structure remains one of the foremost challenges in supramolecular chemistry. Here we describe the design, synthesis, and characterization of a Ag nanocage with 180 Ag atoms as 4-valent vertices (V), 360 edges (E), and 182 faces (F)--sixty 3-gons, ninety 4-gons, twelve 5-gons, and twenty 6-gons--in agreement with Euler's rule V - E + F = 2. If each 3-gon (or silver Trigon) were replaced with a carbon atom linked by edges along the 4-gons, the result would be like C, topologically a truncated icosahedron, an Archimedean solid with icosahedral () point-group symmetry. If C can be described mathematically as a curling up of a 6.6.6 Platonic tiling, the Ag cage can be described as a curling up of a 3.4.6.4 Archimedean tiling. High-resolution electrospray ionization mass spectrometry reveals that {Ag} subunits coexist with the Ag species in the assembly system before the final crystallization of Ag, suggesting that the silver Trigon is the smallest building block in assembly of the final cage. Thus, we assign the underlying growth mechanism of Ag to the Silver-Trigon Assembly Road (STAR), an assembly path that might be further employed to fabricate larger, elegant silver cages.
富勒烯(C)代表了几何形状和分子结构化学的完美结合。它激发了许多构建类富勒烯纳米多面体的创意想法。这些包括其他富勒烯、病毒衣壳、基于 DNA 的多面体以及合成多核金属簇和笼。事实上,将大量金属原子规则地组织成一个高度复杂的结构仍然是超分子化学的首要挑战之一。在这里,我们描述了一种具有 180 个 Ag 原子作为 4 价顶点(V)、360 条边(E)和 182 个面(F)的 Ag 纳米笼的设计、合成和表征——六十个 3 边形、九十四个 4 边形、十二个 5 边形和二十个 6 边形——符合欧拉规则 V-E+F=2。如果每个 3 边形(或银三角)都被通过边缘连接的碳原子取代,沿着 4 边形排列,结果将类似于 C,拓扑上是截角的二十面体,一种具有二十面体()点群对称的阿基米德立体。如果 C 可以用数学方式描述为一个 6.6.6 柏拉图镶嵌的卷曲,那么 Ag 笼可以用数学方式描述为一个 3.4.6.4 阿基米德镶嵌的卷曲。高分辨率电喷雾电离质谱揭示,在 Ag 最终结晶之前,{Ag}亚基与组装体系中的 Ag 物种共存,这表明银三角是组装最终笼的最小构建块。因此,我们将 Ag 的基本生长机制归因于银三角组装路径(STAR),这是一种可能进一步用于制造更大、优雅的银笼的组装路径。