Suppr超能文献

利用电子鼻结合智能手机和云存储平台鉴别不同标注年份的米酒。

Identification of the Rice Wines with Different Marked Ages by Electronic Nose Coupled with Smartphone and Cloud Storage Platform.

机构信息

Department of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.

出版信息

Sensors (Basel). 2017 Oct 31;17(11):2500. doi: 10.3390/s17112500.

Abstract

In this study, a portable electronic nose (E-nose) was self-developed to identify rice wines with different marked ages-all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP) and the aftertaste information obtained phase (AIOP). The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA), locally linear embedding (LLE) and linear discriminant analysis (LDA) were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR) and support vector machine (SVM) were applied for the predictions of marked ages and SVM (R² = 0.9942) worked much better than PLSR.

摘要

在这项研究中,我们自行开发了一种便携式电子鼻(E-nose),用于识别不同标记年份的米酒——E-nose 的所有操作都由一个特殊的智能手机应用程序控制。E-nose 的传感器阵列由 12 个 MOS 传感器组成,获得的响应值通过无线通信模块传输到智能手机。然后,阿里云作为云存储平台,用于存储响应和识别模型。E-nose 的测量由味觉信息获取阶段(TIOP)和回味信息获取阶段(AIOP)组成。来自 TIOP 的面积特征数据和来自 TIOP-AIOP 的特征数据被应用于通过模式识别方法识别米酒。主成分分析(PCA)、局部线性嵌入(LLE)和线性判别分析(LDA)被应用于这些酒样的分类。基于 TIOP-AIOP 获得的面积特征数据的 LDA 证明是一种强大的工具,并显示出最好的分类结果。偏最小二乘回归(PLSR)和支持向量机(SVM)被应用于标记年龄的预测,SVM(R²=0.9942)的效果明显优于 PLSR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/425b/5712832/e4a40ff50f88/sensors-17-02500-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验