Suppr超能文献

政治动荡期间的社交媒体分析。

Social media analysis during political turbulence.

作者信息

Antonakaki Despoina, Spiliotopoulos Dimitris, V Samaras Christos, Pratikakis Polyvios, Ioannidis Sotiris, Fragopoulou Paraskevi

机构信息

FORTH-ICS, Heraklion, Crete, Greece.

University of Houston, Department of Computer Science, Houston, TX, United States of America.

出版信息

PLoS One. 2017 Oct 31;12(10):e0186836. doi: 10.1371/journal.pone.0186836. eCollection 2017.

Abstract

Today, a considerable proportion of the public political discourse on nationwide elections proceeds in Online Social Networks. Through analyzing this content, we can discover the major themes that prevailed during the discussion, investigate the temporal variation of positive and negative sentiment and examine the semantic proximity of these themes. According to existing studies, the results of similar tasks are heavily dependent on the quality and completeness of dictionaries for linguistic preprocessing, entity discovery and sentiment analysis. Additionally, noise reduction is achieved with methods for sarcasm detection and correction. Here we report on the application of these methods on the complete corpus of tweets regarding two local electoral events of worldwide impact: the Greek referendum of 2015 and the subsequent legislative elections. To this end, we compiled novel dictionaries for sentiment and entity detection for the Greek language tailored to these events. We subsequently performed volume analysis, sentiment analysis, sarcasm correction and topic modeling. Results showed that there was a strong anti-austerity sentiment accompanied with a critical view on European and Greek political actions.

摘要

如今,关于全国性选举的大量公共政治话语在在线社交网络中展开。通过分析这些内容,我们可以发现讨论中盛行的主要主题,调查积极和消极情绪的时间变化,并检验这些主题的语义相近性。根据现有研究,类似任务的结果在很大程度上依赖于用于语言预处理、实体发现和情感分析的词典的质量和完整性。此外,通过讽刺检测和纠正方法来实现降噪。在此,我们报告这些方法在关于两个具有全球影响力的地方选举事件的完整推特语料库上的应用:2015年希腊公投以及随后的立法选举。为此,我们针对这些事件编制了专门用于希腊语情感和实体检测的新词典。我们随后进行了数量分析、情感分析、讽刺纠正和主题建模。结果表明,存在强烈的反紧缩情绪,同时对欧洲和希腊的政治行动持批评态度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b30c/5663401/7abc419f4ca8/pone.0186836.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验