Pandya Mirali, Rosene Lauren, Farquharson Colin, Millán José L, Diekwisch Thomas G H
Department of Periodontics, Texas A&M College of Dentistry, Dallas, TX, United States.
Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, United States.
Front Physiol. 2017 Oct 17;8:805. doi: 10.3389/fphys.2017.00805. eCollection 2017.
The transport of mineral ions from the enamel organ-associated blood vessels to the developing enamel crystals involves complex cargo packaging and carriage mechanisms across several cell layers, including the ameloblast layer and the stratum intermedium. Previous studies have established PHOSPHO1 as a matrix vesicle membrane-associated phosphatase that interacts with matrix vesicles molecules phosphoethanolamine and phosphocholine to initiate apatite crystal formation inside of matrix vesicles in bone. In the present study, we sought to determine the function of during amelogenesis. PHOSPHO1 protein localization during amelogenesis was verified using immunohistochemistry, with positive signals in the enamel layer, ameloblast Tomes' processes, and in the walls of ameloblast secretory vesicles. These ameloblast secretory vesicle walls were also labeled for amelogenin and the exosomal protein marker HSP70 using immunohistochemistry. Furthermore, PHOSPHO1 presence in the enamel organ was confirmed by Western blot. mice lacked sharp incisal tips, featured a significant 25% increase in total enamel volume, and demonstrated a significant 2-fold reduction in silver grain density of von Kossa stained ground sections indicative of reduced mineralization in the enamel layer when compared to wild-type mice ( < 0.001). Scanning electron micrographs of mouse enamel revealed a loss of the prominent enamel prism "picket fence" structure, a loss of parallel crystal organization within prisms, and a 1.56-fold increase in enamel prism width ( < 0.0001). Finally, EDS elemental analysis demonstrated a significant decrease in phosphate incorporation in the enamel layer when compared to controls ( < 0.05). Together, these data establish that the matrix vesicle membrane-associated phosphatase PHOSPHO1 is essential for physiological enamel mineralization. Our findings also suggest that intracellular ameloblast secretory vesicles have unexpected compositional similarities with the extracellular matrix vesicles of bone, dentin, and cementum in terms of vesicle membrane composition and intravesicular ion assembly.
矿物质离子从成釉器相关血管向正在发育的釉质晶体的转运涉及跨多个细胞层的复杂货物包装和运输机制,包括成釉细胞层和中间层。先前的研究已确定PHOSPHO1是一种与基质小泡膜相关的磷酸酶,它与基质小泡分子磷酸乙醇胺和磷酸胆碱相互作用,在骨的基质小泡内启动磷灰石晶体形成。在本研究中,我们试图确定 在釉质形成过程中的功能。使用免疫组织化学法验证了釉质形成过程中PHOSPHO1蛋白的定位,在釉质层、成釉细胞托姆斯突以及成釉细胞分泌小泡壁中有阳性信号。这些成釉细胞分泌小泡壁也用免疫组织化学法标记了釉原蛋白和外泌体蛋白标记物HSP70。此外,通过蛋白质免疫印迹法证实了成釉器中存在PHOSPHO1。与野生型小鼠相比, 小鼠缺乏尖锐的切端,釉质总体积显著增加25%,并且von Kossa染色磨片的银颗粒密度显著降低2倍,表明釉质层矿化减少( < 0.001)。 小鼠釉质的扫描电子显微镜图像显示,突出的釉柱“栅栏”结构消失,柱内平行晶体排列消失,釉柱宽度增加1.56倍( < 0.0001)。最后,能谱元素分析表明,与对照组相比,釉质层中磷酸盐掺入量显著减少( < 0.05)。总之,这些数据表明,与基质小泡膜相关的磷酸酶PHOSPHO1对生理性釉质矿化至关重要。我们的研究结果还表明,就小泡膜组成和小泡内离子组装而言,细胞内成釉细胞分泌小泡与骨、牙本质和牙骨质的细胞外基质小泡具有意想不到的组成相似性。