School of Life Sciences, Tianjin University , Tianjin 300072, China.
National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics , Beijing 102206, China.
Anal Chem. 2017 Dec 5;89(23):12909-12917. doi: 10.1021/acs.analchem.7b03673. Epub 2017 Nov 16.
Reversible methylation of proteins regulates the majority of cellular processes, including signal transduction, mRNA splicing, transcriptional control, DNA repair, and protein translocation. A fundamental understanding of these biological processes at the molecular level requires comprehensive characterization of the methylated proteins. Methylation is often substoichiometric, and only a very limited number of methylated proteins and sites have been confidently identified to date. Although the intrinsically basic/hydrophilic methylated peptides can be enriched by the hydrophilic interaction liquid chromatography (HILIC), other hydrophilic peptides can coelute during the enrichment process and suppress the detection of methylated peptides. In addition, the modified Arg and Lys residues cannot be efficiently cleaved by trypsin, the most commonly used enzyme in shotgun proteomics. To overcome these caveats, we develop a novel de-glyco-assisted methylation site identification (DOMAIN) strategy which enables straightforward, fast, and reproducible analysis of protein methylation in a proteome-wide manner. Combining multidimensional fractionation and multiprotease digestion, our method enabled the identification of 573 methylated forms in 270 proteins, including 311 new methylation forms, in A549 cells. Combining this technique with stable isotope labeling quantitative proteomics and RNA interference, we determined the differential regulation of several putative methylated sites that are related to the protein arginine N-methyltransferase 3 (PRMT3). Collectively, our integrated proteomics workflow for comprehensive mapping of methylation sites enables a better understanding of protein methylation, while providing a rapid and effective approach for global protein methylation analysis in biomedical research.
蛋白质的可逆甲基化调控着大多数细胞过程,包括信号转导、mRNA 剪接、转录控制、DNA 修复和蛋白质易位。要从分子水平上全面了解这些生物学过程,就需要对甲基化蛋白质进行全面的特征描述。甲基化通常是亚化学计量的,到目前为止,只有非常有限数量的甲基化蛋白质和位点被自信地鉴定出来。虽然固有地碱性/亲水性的甲基化肽可以通过亲水相互作用液相色谱(HILIC)进行富集,但在富集过程中其他亲水性肽会共洗脱,并抑制甲基化肽的检测。此外,修饰的 Arg 和 Lys 残基不能被胰蛋白酶有效切割,而胰蛋白酶是 shotgun 蛋白质组学中最常用的酶。为了克服这些缺点,我们开发了一种新的去糖基辅助甲基化位点鉴定(DOMAIN)策略,该策略能够以一种简单、快速和可重复的方式在全蛋白质组范围内分析蛋白质甲基化。通过多维分级和多蛋白酶消化相结合,我们的方法在 A549 细胞中鉴定了 270 种蛋白质中的 573 种甲基化形式,包括 311 种新的甲基化形式。将该技术与稳定同位素标记定量蛋白质组学和 RNA 干扰相结合,我们确定了几个假定的甲基化位点的差异调节,这些位点与蛋白质精氨酸 N-甲基转移酶 3(PRMT3)有关。总之,我们综合蛋白质组学工作流程用于全面绘制甲基化位点,有助于更好地理解蛋白质甲基化,同时为生物医学研究中的全局蛋白质甲基化分析提供了一种快速有效的方法。