Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089.
Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90089; Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089.
Mol Cell Proteomics. 2019 Nov;18(11):2149-2164. doi: 10.1074/mcp.RA119.001625. Epub 2019 Aug 26.
Protein methylation has been implicated in many important biological contexts including signaling, metabolism, and transcriptional control. Despite the importance of this post-translational modification, the global analysis of protein methylation by mass spectrometry-based proteomics has not been extensively studied because of the lack of robust, well-characterized techniques for methyl peptide enrichment. Here, to better investigate protein methylation, we compared two methods for methyl peptide enrichment: immunoaffinity purification (IAP) and high pH strong cation exchange (SCX). Using both methods, we identified 1720 methylation sites on 778 proteins. Comparison of these methods revealed that they are largely orthogonal, suggesting that the usage of both techniques is required to provide a global view of protein methylation. Using both IAP and SCX, we then investigated changes in protein methylation downstream of protein arginine methyltransferase 1 (PRMT1). PRMT1 knockdown resulted in significant changes to 127 arginine methylation sites on 78 proteins. In contrast, only a single lysine methylation site was significantly changed upon PRMT1 knockdown. In PRMT1 knockdown cells, we found 114 MMA sites that were either significantly downregulated or upregulated on proteins enriched for mRNA metabolic processes. PRMT1 knockdown also induced significant changes in both asymmetric dimethyl arginine (ADMA) and symmetric dimethyl arginine (SDMA). Using characteristic neutral loss fragmentation ions, we annotated dimethylarginines as either ADMA or SDMA. Through integrative analysis of methyl forms, we identified 18 high confidence PRMT1 substrates and 12 methylation sites that are scavenged by other non-PRMT1 arginine methyltransferases in the absence of PRMT1 activity. We also identified one methylation site, HNRNPA1 R206, which switched from ADMA to SDMA upon PRMT1 knockdown. Taken together, our results suggest that deep protein methylation profiling by mass spectrometry requires orthogonal enrichment techniques to identify novel PRMT1 methylation targets and highlight the dynamic interplay between methyltransferases in mammalian cells.
蛋白质甲基化在许多重要的生物学背景中都有涉及,包括信号转导、代谢和转录调控。尽管这种翻译后修饰很重要,但由于缺乏稳健、特征良好的甲基肽富集技术,基于质谱的蛋白质组学对蛋白质甲基化的全面分析尚未得到广泛研究。在这里,为了更好地研究蛋白质甲基化,我们比较了两种甲基肽富集方法:免疫亲和纯化(IAP)和高 pH 值强阳离子交换(SCX)。使用这两种方法,我们在 778 种蛋白质上鉴定了 1720 个甲基化位点。这两种方法的比较表明,它们在很大程度上是正交的,这表明需要使用这两种技术来提供蛋白质甲基化的全局视图。使用 IAP 和 SCX,我们随后研究了蛋白质精氨酸甲基转移酶 1(PRMT1)下游蛋白质甲基化的变化。PRMT1 敲低导致 78 种蛋白质上 127 个精氨酸甲基化位点发生显著变化。相比之下,PRMT1 敲低后只有一个赖氨酸甲基化位点发生显著变化。在 PRMT1 敲低细胞中,我们发现 114 个 MMA 位点在富含 mRNA 代谢过程的蛋白质上显著下调或上调。PRMT1 敲低还诱导了不对称二甲基精氨酸(ADMA)和对称二甲基精氨酸(SDMA)的显著变化。使用特征性中性丢失碎片离子,我们将二甲基精氨酸注释为 ADMA 或 SDMA。通过对甲基形式的综合分析,我们鉴定了 18 个高置信度的 PRMT1 底物和 12 个在 PRMT1 活性缺失时被其他非 PRMT1 精氨酸甲基转移酶清除的甲基化位点。我们还鉴定了一个甲基化位点 HNRNPA1 R206,该位点在 PRMT1 敲低后从 ADMA 转变为 SDMA。总之,我们的结果表明,通过质谱对蛋白质进行深度甲基化分析需要正交富集技术来识别新的 PRMT1 甲基化靶标,并强调了哺乳动物细胞中甲基转移酶之间的动态相互作用。