Suppr超能文献

基于模型的FDG PET扫描中含球形插入物体模的自动定量分析。

Automated model-based quantitative analysis of phantoms with spherical inserts in FDG PET scans.

作者信息

Ulrich Ethan J, Sunderland John J, Smith Brian J, Mohiuddin Imran, Parkhurst Jessica, Plichta Kristin A, Buatti John M, Beichel Reinhard R

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA.

Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA.

出版信息

Med Phys. 2018 Jan;45(1):258-276. doi: 10.1002/mp.12643. Epub 2017 Nov 23.

Abstract

PURPOSE

Quality control plays an increasingly important role in quantitative PET imaging and is typically performed using phantoms. The purpose of this work was to develop and validate a fully automated analysis method for two common PET/CT quality assurance phantoms: the NEMA NU-2 IQ and SNMMI/CTN oncology phantom. The algorithm was designed to only utilize the PET scan to enable the analysis of phantoms with thin-walled inserts.

METHODS

We introduce a model-based method for automated analysis of phantoms with spherical inserts. Models are first constructed for each type of phantom to be analyzed. A robust insert detection algorithm uses the model to locate all inserts inside the phantom. First, candidates for inserts are detected using a scale-space detection approach. Second, candidates are given an initial label using a score-based optimization algorithm. Third, a robust model fitting step aligns the phantom model to the initial labeling and fixes incorrect labels. Finally, the detected insert locations are refined and measurements are taken for each insert and several background regions. In addition, an approach for automated selection of NEMA and CTN phantom models is presented. The method was evaluated on a diverse set of 15 NEMA and 20 CTN phantom PET/CT scans. NEMA phantoms were filled with radioactive tracer solution at 9.7:1 activity ratio over background, and CTN phantoms were filled with 4:1 and 2:1 activity ratio over background. For quantitative evaluation, an independent reference standard was generated by two experts using PET/CT scans of the phantoms. In addition, the automated approach was compared against manual analysis, which represents the current clinical standard approach, of the PET phantom scans by four experts.

RESULTS

The automated analysis method successfully detected and measured all inserts in all test phantom scans. It is a deterministic algorithm (zero variability), and the insert detection RMS error (i.e., bias) was 0.97, 1.12, and 1.48 mm for phantom activity ratios 9.7:1, 4:1, and 2:1, respectively. For all phantoms and at all contrast ratios, the average RMS error was found to be significantly lower for the proposed automated method compared to the manual analysis of the phantom scans. The uptake measurements produced by the automated method showed high correlation with the independent reference standard (R ≥ 0.9987). In addition, the average computing time for the automated method was 30.6 s and was found to be significantly lower (P ≪ 0.001) compared to manual analysis (mean: 247.8 s).

CONCLUSIONS

The proposed automated approach was found to have less error when measured against the independent reference than the manual approach. It can be easily adapted to other phantoms with spherical inserts. In addition, it eliminates inter- and intraoperator variability in PET phantom analysis and is significantly more time efficient, and therefore, represents a promising approach to facilitate and simplify PET standardization and harmonization efforts.

摘要

目的

质量控制在定量PET成像中发挥着越来越重要的作用,通常使用体模来进行。本研究的目的是开发并验证一种针对两种常见PET/CT质量保证体模的全自动分析方法:NEMA NU-2 IQ体模和SNMMI/CTN肿瘤体模。该算法设计为仅利用PET扫描,以便能够分析带有薄壁插入物的体模。

方法

我们引入了一种基于模型的方法,用于对带有球形插入物的体模进行自动分析。首先为每种待分析的体模类型构建模型。一种稳健的插入物检测算法利用该模型来定位体模内的所有插入物。首先,使用尺度空间检测方法检测插入物的候选位置。其次,使用基于分数的优化算法为候选位置赋予初始标签。第三,一个稳健的模型拟合步骤将体模模型与初始标记对齐,并修正错误标签。最后,对检测到的插入物位置进行细化,并对每个插入物和几个背景区域进行测量。此外,还提出了一种自动选择NEMA和CTN体模模型的方法。该方法在15个NEMA体模和20个CTN体模的PET/CT扫描数据集上进行了评估。NEMA体模填充有放射性示踪剂溶液,其活度比背景高9.7:1,CTN体模填充有活度比背景高4:1和2:1的溶液。为了进行定量评估,由两位专家使用体模的PET/CT扫描生成了一个独立的参考标准。此外,将自动分析方法与由四位专家对PET体模扫描进行的手动分析(代表当前临床标准方法)进行了比较。

结果

自动分析方法成功检测并测量了所有测试体模扫描中的所有插入物。它是一种确定性算法(零变异性),对于体模活度比9.7:1、4:1和2:1,插入物检测的均方根误差(即偏差)分别为0.97、1.12和1.48毫米。对于所有体模和所有对比度,与体模扫描的手动分析相比,可以发现所提出的自动方法的平均均方根误差显著更低。自动方法产生的摄取测量结果与独立参考标准显示出高度相关性(R≥0.9987)。此外,自动方法的平均计算时间为30.6秒,与手动分析(平均:247.8秒)相比,显著更低(P≪0.001)。

结论

与手动方法相比,所提出的自动方法在与独立参考标准比较时误差更小。它可以很容易地适用于其他带有球形插入物的体模。此外,它消除了PET体模分析中操作者间和操作者内的变异性,并且在时间效率上显著更高,因此,代表了一种有助于促进和简化PET标准化与协调工作的有前景的方法。

相似文献

7
A novel approach for quantitative harmonization in PET.一种新的 PET 定量配准方法。
Phys Med Biol. 2018 May 4;63(9):095019. doi: 10.1088/1361-6560/aabb5f.

引用本文的文献

1
A review of harmonization strategies for quantitative PET.定量 PET 调谐策略综述。
Ann Nucl Med. 2023 Feb;37(2):71-88. doi: 10.1007/s12149-022-01820-x. Epub 2023 Jan 6.

本文引用的文献

7
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验