Suppr超能文献

神经元培养中的正反馈和同步爆发。

Positive feedback and synchronized bursts in neuronal cultures.

作者信息

Huang Yu-Ting, Chang Yu-Lin, Chen Chun-Chung, Lai Pik-Yin, Chan C K

机构信息

Dept. of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC.

Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC.

出版信息

PLoS One. 2017 Nov 1;12(11):e0187276. doi: 10.1371/journal.pone.0187276. eCollection 2017.

Abstract

Synchronized bursts (SBs) with complex structures are common in neuronal cultures. Although the phenomenon of SBs has been discovered for a long time, its origin is still unclear. Here, we investigate the properties of these SBs in cultures grown on a multi-electrode array. We find that structures of these SBs are related to the different developmental stages of the cultures and these structures can be modified by changing the magnesium concentration in the culture medium; indicating that synaptic mechanism is involved in the generation of SBs. A model based on short term synaptic plasticity (STSP), recurrent connections and astrocytic recycling of neurotransmitters has been developed successfully to understand the observed structures of SBs in experiments. A phase diagram obtained from this model shows that networks exhibiting SBs are in a complex oscillatory state due to large enough positive feedback provided by synaptic facilitation and recurrent connections. In this model, while STSP controls the fast oscillations (∼ 100 ms) within a SB, the astrocytic recycling determines the slow time scale (∼10 s) of inter-burst intervals. Our study suggests that glia-neuron interactions can be important in the understanding of the complex dynamics of neuronal networks.

摘要

具有复杂结构的同步爆发(SBs)在神经元培养物中很常见。尽管SBs现象早已被发现,但其起源仍不清楚。在这里,我们研究了在多电极阵列上生长的培养物中这些SBs的特性。我们发现这些SBs的结构与培养物的不同发育阶段有关,并且这些结构可以通过改变培养基中的镁浓度来改变;这表明突触机制参与了SBs的产生。基于短期突触可塑性(STSP)、循环连接和神经递质的星形胶质细胞再循环,已经成功开发了一个模型来理解实验中观察到的SBs结构。从该模型获得的相图表明,由于突触易化和循环连接提供了足够大的正反馈,表现出SBs的网络处于复杂的振荡状态。在这个模型中,虽然STSP控制SB内的快速振荡(约100毫秒),但星形胶质细胞再循环决定了爆发间隔的慢速时间尺度(约10秒)。我们的研究表明,胶质细胞-神经元相互作用在理解神经网络的复杂动力学中可能很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5533/5665536/2458b12065ff/pone.0187276.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验