Department of Chemistry and Argonne-Northwestern Solar Energy Research Center, Northwestern University , Evanston, Illinois 60208, United States.
Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, CNRS, Ecole Nationale Supérieure de Chimie de Rennes, INSA, Université de Rennes 1 Rennes 35708, France.
J Am Chem Soc. 2017 Nov 15;139(45):16297-16309. doi: 10.1021/jacs.7b09096. Epub 2017 Nov 2.
We present the new homologous series (C(NH))(CHNH)PbI (n = 1, 2, 3) of layered 2D perovskites. Structural characterization by single-crystal X-ray diffraction reveals that these compounds adopt an unprecedented structure type, which is stabilized by the alternating ordering of the guanidinium and methylammonium cations in the interlayer space (ACI). Compared to the more common Ruddlesden-Popper (RP) 2D perovskites, the ACI perovskites have a different stacking motif and adopt a higher crystal symmetry. The higher symmetry of the ACI perovskites is expressed in their physical properties, which show a characteristic decrease of the bandgap with respect to their RP perovskite counterparts with the same perovskite layer thickness (n). The compounds show a monotonic decrease in the optical gap as n increases: E = 2.27 eV for n = 1 to E = 1.99 eV for n = 2 and E = 1.73 eV for n = 3, which show slightly narrower gaps compared to the corresponding RP perovskites. First-principles theoretical electronic structure calculations confirm the experimental optical gap trends suggesting that the ACI perovskites are direct bandgap semiconductors with wide valence and conduction bandwidths. To assess the potential of the ACI perovskites toward solar cell applications, we studied the (C(NH))(CHNH)PbI (n = 3) compound. Compact thin films from the (C(NH))(CHNH)PbI compound with excellent surface coverage can be obtained from the antisolvent dripping method. Planar photovoltaic devices from optimized ACI perovskite films yield a power-conversion-efficiency of 7.26% with a high open-circuit voltage of ∼1 V and a striking fill factor of ∼80%.
我们提出了层状二维钙钛矿的新同系物(C(NH))(CHNH)PbI(n = 1, 2, 3)。通过单晶 X 射线衍射对结构进行的表征揭示了这些化合物采用了一种前所未有的结构类型,这种结构类型由层间空间中胍和甲基铵阳离子的交替有序(ACI)稳定。与更常见的 Ruddlesden-Popper(RP)二维钙钛矿相比,ACI 钙钛矿具有不同的堆积模式并采用更高的晶体对称性。ACI 钙钛矿的更高对称性体现在其物理性质中,与具有相同钙钛矿层厚度(n)的 RP 钙钛矿对应物相比,其带隙具有特征性减小。随着 n 的增加,化合物的光学带隙呈单调减小:n = 1 时 E = 2.27 eV,n = 2 时 E = 1.99 eV,n = 3 时 E = 1.73 eV,与相应的 RP 钙钛矿相比,这些值的带隙略窄。第一性原理理论电子结构计算证实了实验的光学带隙趋势,表明 ACI 钙钛矿是具有宽价带和导带带宽的直接带隙半导体。为了评估 ACI 钙钛矿在太阳能电池应用中的潜力,我们研究了(C(NH))(CHNH)PbI(n = 3)化合物。通过反溶剂滴涂法,可以从(C(NH))(CHNH)PbI 化合物获得具有优异表面覆盖率的致密薄膜。从优化的 ACI 钙钛矿薄膜获得的平面光伏器件的功率转换效率为 7.26%,开路电压约为 1 V,填充因子高达 80%。