Jiang Hengyi, Yang Rui, Zhu Ziqi, Sun Chao, Jin Yongbin, Zheng Lingfang, Shen Lina, Tian Chengbo, Xie Liqiang, Yang Jinxin, Wei Zhanhua
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
Adv Sci (Weinh). 2025 May;12(18):e2416634. doi: 10.1002/advs.202416634. Epub 2025 Mar 20.
The precise stoichiometric ratio of lead halide and organic ammonium salts is a fundamental yet unresolved scientific challenge in perovskite solar cells (PSCs). Conventional deposition techniques fail to establish a definitive structure-performance relationship due to limitations in quantitative control, leading to inconsistent film quality and ambiguous reaction pathways. In this work, a precise quantitative deposition approach using drop-on-demand inkjet printing to systematically investigate the impact of organic salt deposition surface density on PSC performance is developed. The findings reveal that the deposition amount significantly affects the morphology, composition, and crystallinity of the perovskite films, influencing the overall device performance. Low deposition surface densities below 22 µg cm produce thin perovskite films with incomplete crystallization and small crystals, hindering charge carrier transport and separation. Conversely, a high deposition density (89 µg cm) results in over-reaction between the organic salt and PbI, leading to low-quality perovskite films with pinholes, cracks, and poor interfacial contact. At the optimal deposition density of 39 µg cm, it achieves high-quality perovskite films with large grains, reduced defects, and improved energy level alignment, resulting in a champion efficiency of 23.3% and improved environmental stability for the devices.
卤化铅与有机铵盐的精确化学计量比是钙钛矿太阳能电池(PSC)中一个基本但尚未解决的科学挑战。由于定量控制方面的限制,传统的沉积技术无法建立明确的结构-性能关系,导致薄膜质量不一致且反应路径不明确。在这项工作中,开发了一种使用按需滴墨喷墨打印的精确定量沉积方法,以系统地研究有机盐沉积表面密度对PSC性能的影响。研究结果表明,沉积量显著影响钙钛矿薄膜的形态、组成和结晶度,进而影响整个器件的性能。低于22 µg cm的低沉积表面密度会产生结晶不完全且晶体较小的薄钙钛矿薄膜,阻碍电荷载流子的传输和分离。相反,高沉积密度(89 µg cm)会导致有机盐与PbI之间过度反应,从而产生具有针孔、裂纹和不良界面接触的低质量钙钛矿薄膜。在39 µg cm的最佳沉积密度下,可获得具有大晶粒、减少缺陷和改善能级排列的高质量钙钛矿薄膜,使器件的冠军效率达到23.3%,并提高了环境稳定性。