Bumpus Timothy W, Liang Felice J, Baskin Jeremy M
Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University , Ithaca, New York 14853, United States.
Biochemistry. 2018 Jan 16;57(2):226-230. doi: 10.1021/acs.biochem.7b01021. Epub 2017 Nov 8.
Imaging approaches that track biological molecules within cells are essential tools in modern biochemistry. Lipids are particularly challenging to visualize, as they are not directly genetically encoded. Phospholipids, the most abundant subgroup of lipids, are structurally diverse and accomplish many cellular functions, acting as major structural components of membranes and as signaling molecules that regulate cell growth, division, apoptosis, cytoskeletal dynamics, and numerous other physiological processes. Cells regulate the abundance, and therefore bioactivity, of phospholipids by modulating the activities of their biosynthetic enzymes. Thus, techniques that enable monitoring of flux through individual lipid biosynthetic pathways can provide key functional information. For example, the choline analogue propargylcholine (ProCho) can report on de novo biosynthesis of phosphatidylcholine by conversion to an alkynyl lipid that can be imaged following click chemistry tagging with an azido fluorophore. We report that ProCho is also a substrate of phospholipase D enzymes-which normally hydrolyze phosphatidylcholine to generate the lipid second messenger phosphatidic acid-in a transphosphatidylation reaction, generating the identical alkynyl lipid. By controlling the activities of phosphatidylcholine biosynthesis and phospholipase D enzymes, we establish labeling conditions that enable this single probe to selectively report on two different biosynthetic pathways. Just as nature exploits the economy of common metabolic intermediates to efficiently diversify biosynthesis, so can biochemists in interrogating such pathways with careful probe design. We envision that ProCho's ability to report on multiple metabolic pathways will enable studies of membrane dynamics and improve our understanding of the myriad roles that lipids play in cellular homeostasis.
追踪细胞内生物分子的成像方法是现代生物化学中的重要工具。脂质尤其难以可视化,因为它们不是直接由基因编码的。磷脂是脂质中最丰富的亚类,其结构多样,具有多种细胞功能,既是细胞膜的主要结构成分,又是调节细胞生长、分裂、凋亡、细胞骨架动力学及许多其他生理过程的信号分子。细胞通过调节其生物合成酶的活性来调控磷脂的丰度,进而调控其生物活性。因此,能够监测单个脂质生物合成途径通量的技术可以提供关键的功能信息。例如,胆碱类似物炔丙基胆碱(ProCho)可以通过转化为炔基脂质来报告磷脂酰胆碱的从头生物合成,该炔基脂质在与叠氮荧光团进行点击化学标记后可以成像。我们报告称,ProCho也是磷脂酶D酶的底物——磷脂酶D通常水解磷脂酰胆碱以生成脂质第二信使磷脂酸——在转磷脂酰基反应中,生成相同的炔基脂质。通过控制磷脂酰胆碱生物合成和磷脂酶D酶的活性,我们建立了标记条件,使这种单一探针能够选择性地报告两种不同的生物合成途径。正如自然界利用常见代谢中间体的经济性来高效地使生物合成多样化一样,生物化学家也可以通过精心设计探针来探究此类途径。我们设想,ProCho报告多种代谢途径的能力将有助于研究膜动力学,并增进我们对脂质在细胞内稳态中所起的众多作用的理解。