Suppr超能文献

自闭症谱系障碍中基因表达的选择与分类:统计滤波器与GBPSO-SVM算法相结合的应用

Selection and classification of gene expression in autism disorder: Use of a combination of statistical filters and a GBPSO-SVM algorithm.

作者信息

Hameed Shilan S, Hassan Rohayanti, Muhammad Fahmi F

机构信息

Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

Department of Software and Informatics Engineering, College of Engineering, Salahaddin University, Erbil, Kurdistan Region, Iraq.

出版信息

PLoS One. 2017 Nov 2;12(11):e0187371. doi: 10.1371/journal.pone.0187371. eCollection 2017.

Abstract

In this work, gene expression in autism spectrum disorder (ASD) is analyzed with the goal of selecting the most attributed genes and performing classification. The objective was achieved by utilizing a combination of various statistical filters and a wrapper-based geometric binary particle swarm optimization-support vector machine (GBPSO-SVM) algorithm. The utilization of different filters was accentuated by incorporating a mean and median ratio criterion to remove very similar genes. The results showed that the most discriminative genes that were identified in the first and last selection steps included the presence of a repetitive gene (CAPS2), which was assigned as the gene most highly related to ASD risk. The merged gene subset that was selected by the GBPSO-SVM algorithm was able to enhance the classification accuracy.

摘要

在这项工作中,对自闭症谱系障碍(ASD)中的基因表达进行了分析,目的是选择最具代表性的基因并进行分类。通过结合各种统计过滤器和基于包装器的几何二进制粒子群优化支持向量机(GBPSO-SVM)算法实现了这一目标。通过纳入均值和中位数比率标准以去除非常相似的基因,突出了不同过滤器的使用。结果表明,在第一个和最后一个选择步骤中确定的最具区分性的基因包括一个重复基因(CAPS2)的存在,该基因被确定为与ASD风险高度相关的基因。由GBPSO-SVM算法选择的合并基因子集能够提高分类准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a59/5667738/ae178903d68f/pone.0187371.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验