Suppr超能文献

医疗物联网中安全与隐私问题的系统综述;机器学习方法的作用。

A systematic review of security and privacy issues in the internet of medical things; the role of machine learning approaches.

作者信息

Hameed Shilan S, Hassan Wan Haslina, Abdul Latiff Liza, Ghabban Fahad

机构信息

Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.

Directorate of Information Technology, Koya University, Koya, Kurdistan Region, Iraq.

出版信息

PeerJ Comput Sci. 2021 Mar 23;7:e414. doi: 10.7717/peerj-cs.414. eCollection 2021.

Abstract

BACKGROUND

The Internet of Medical Things (IoMTs) is gradually replacing the traditional healthcare system. However, little attention has been paid to their security requirements in the development of the IoMT devices and systems. One of the main reasons can be the difficulty of tuning conventional security solutions to the IoMT system. Machine Learning (ML) has been successfully employed in the attack detection and mitigation process. Advanced ML technique can also be a promising approach to address the existing and anticipated IoMT security and privacy issues. However, because of the existing challenges of IoMT system, it is imperative to know how these techniques can be effectively utilized to meet the security and privacy requirements without affecting the IoMT systems quality, services, and device's lifespan.

METHODOLOGY

This article is devoted to perform a Systematic Literature Review (SLR) on the security and privacy issues of IoMT and their solutions by ML techniques. The recent research papers disseminated between 2010 and 2020 are selected from multiple databases and a standardized SLR method is conducted. A total of 153 papers were reviewed and a critical analysis was conducted on the selected papers. Furthermore, this review study attempts to highlight the limitation of the current methods and aims to find possible solutions to them. Thus, a detailed analysis was carried out on the selected papers through focusing on their methods, advantages, limitations, the utilized tools, and data.

RESULTS

It was observed that ML techniques have been significantly deployed for device and network layer security. Most of the current studies improved traditional metrics while ignored performance complexity metrics in their evaluations. Their studies environments and utilized data barely represent IoMT system. Therefore, conventional ML techniques may fail if metrics such as resource complexity and power usage are not considered.

摘要

背景

医疗物联网(IoMTs)正在逐渐取代传统的医疗保健系统。然而,在IoMT设备和系统的开发过程中,人们对其安全要求关注甚少。其中一个主要原因可能是难以将传统的安全解决方案调整到IoMT系统。机器学习(ML)已成功应用于攻击检测和缓解过程。先进的ML技术也可能是解决现有和预期的IoMT安全与隐私问题的一种有前途的方法。然而,由于IoMT系统存在的挑战,必须了解如何有效利用这些技术来满足安全与隐私要求,同时又不影响IoMT系统的质量、服务和设备寿命。

方法

本文致力于对IoMT的安全与隐私问题及其通过ML技术的解决方案进行系统文献综述(SLR)。从多个数据库中选取2010年至2020年期间发表的近期研究论文,并采用标准化的SLR方法。共审查了153篇论文,并对所选论文进行了批判性分析。此外,本综述研究试图突出当前方法的局限性,并旨在找到可能的解决方案。因此,通过关注所选论文的方法、优点、局限性、使用的工具和数据,对其进行了详细分析。

结果

据观察,ML技术已大量应用于设备和网络层安全。当前大多数研究在评估中改进了传统指标,却忽略了性能复杂性指标。它们的研究环境和使用的数据几乎不能代表IoMT系统。因此,如果不考虑资源复杂性和功耗等指标,传统的ML技术可能会失败。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bf9/8022640/5705630098cc/peerj-cs-07-414-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验