Suppr超能文献

通过能量分解分析和 AMOEBA 力场研究金属离子与蛋白质模型化合物的相互作用。

Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

J Chem Phys. 2017 Oct 28;147(16):161733. doi: 10.1063/1.4985921.

Abstract

The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg/Ca and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.

摘要

金属离子与蛋白质之间的相互作用在生物学中普遍存在。金属离子的选择性结合具有多种调节功能。因此,需要了解蛋白质-离子结合的机制。涉及金属离子的相互作用在本质上很复杂,其中短程电荷穿透、电荷转移、极化和多体效应对其都有重要影响,而目前缺乏对所有这些相互作用的定量描述。此外,目前的极化力场能否很好地捕捉这些能量项,以及这些极化模型是否足以描述多体效应尚不清楚。在这项工作中,利用绝对局域分子轨道和对称自适应微扰理论两种能量分解方法,研究了 Mg/Ca 与氨基酸模型化合物之间的相互作用。对各个相互作用分量的比较表明,虽然 Ca 配合物中存在显著的电荷穿透和电荷转移效应,但这些效应可以被 AMOEBA 力场中的范德华(vdW)项捕捉到。由于电荷穿透较小,Mg 配合物中的静电相互作用可以被 AMOEBA 很好地描述,但距离相关的极化能则存在问题。多体效应对蛋白质-离子结合很重要。在没有多体效应的情况下,带高电荷的结合口袋会被过度稳定化,口袋总是偏向 Mg,从而失去选择性。因此,为了预测金属蛋白的结构和能量学,必须在力场中加入多体效应。此外,还发现 Ca 配合物中电荷转移的多体效应不可忽略。将电荷转移能量吸收到加性 vdW 项中是 AMOEBA 多体相互作用能的主要误差源。

相似文献

6
Many-body effect determines the selectivity for Ca and Mg in proteins.多体效应决定了蛋白质对钙和镁的选择性。
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7495-E7501. doi: 10.1073/pnas.1805049115. Epub 2018 Jul 23.
9
Estimating and modeling charge transfer from the SAPT induction energy.估算和建模从 SAPT 感应能转移的电荷。
J Comput Chem. 2017 Oct 5;38(26):2222-2231. doi: 10.1002/jcc.24864. Epub 2017 Aug 2.

引用本文的文献

4
Thermodynamics of Metal-Acetate Interactions.金属-乙酸盐相互作用的热力学
J Phys Chem B. 2024 Jan 25;128(3):684-697. doi: 10.1021/acs.jpcb.3c06567. Epub 2024 Jan 16.

本文引用的文献

3
Capturing Many-Body Interactions with Classical Dipole Induction Models.用经典偶极子感应模型捕捉多体相互作用。
J Chem Theory Comput. 2017 Jun 13;13(6):2751-2761. doi: 10.1021/acs.jctc.7b00225. Epub 2017 May 12.
5
Ion-Specific Effects in Carboxylate Binding Sites.羧酸盐结合位点中的离子特异性效应。
J Phys Chem B. 2016 Dec 15;120(49):12519-12530. doi: 10.1021/acs.jpcb.6b10641. Epub 2016 Dec 6.
8
Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory.基于对称适配微扰理论的下一代力场。
Annu Rev Phys Chem. 2016 May 27;67:467-88. doi: 10.1146/annurev-physchem-040215-112047. Epub 2016 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验