Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.
J Chem Phys. 2017 Oct 28;147(16):161719. doi: 10.1063/1.4985903.
Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.
将量子力学电子结构数据纳入其中对于正确捕捉许多化学过程的物理性质是必要的。质子在水中的跳跃,涉及化学和氢键的重排,就是这样一个内在的量子力学过程的例子。然而,标准的从头算分子动力学 (AIMD) 方法还不能准确预测水的结构,因此对于开发力场来说不太理想。我们转而利用了一种新开发的方法,该方法最小化地偏向 AIMD 模拟,以匹配有限的实验数据,通过使用相对熵最小化来开发新的多尺度反应分子动力学 (MS-RMD) 力场。在本文中,我们提出了两种使用这种参数化的新的 MS-RMD 模型:一种使用具有谐波内振动的水,另一种使用非谐波水。我们表明,新开发的 MS-RMD 模型非常紧密地再现了目标 AIMD 数据中水合过量质子的溶剂化结构。我们还发现使用非谐波水会增加质子跳跃,从而增加质子扩散常数。