Suppr超能文献

使用从头算分子动力学模拟最小化偏向实验数据的方法开发反应力场。

Development of reactive force fields using ab initio molecular dynamics simulation minimally biased to experimental data.

机构信息

Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Chem Phys. 2017 Oct 28;147(16):161719. doi: 10.1063/1.4985903.

Abstract

Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.

摘要

将量子力学电子结构数据纳入其中对于正确捕捉许多化学过程的物理性质是必要的。质子在水中的跳跃,涉及化学和氢键的重排,就是这样一个内在的量子力学过程的例子。然而,标准的从头算分子动力学 (AIMD) 方法还不能准确预测水的结构,因此对于开发力场来说不太理想。我们转而利用了一种新开发的方法,该方法最小化地偏向 AIMD 模拟,以匹配有限的实验数据,通过使用相对熵最小化来开发新的多尺度反应分子动力学 (MS-RMD) 力场。在本文中,我们提出了两种使用这种参数化的新的 MS-RMD 模型:一种使用具有谐波内振动的水,另一种使用非谐波水。我们表明,新开发的 MS-RMD 模型非常紧密地再现了目标 AIMD 数据中水合过量质子的溶剂化结构。我们还发现使用非谐波水会增加质子跳跃,从而增加质子扩散常数。

相似文献

3
The curious case of the hydrated proton.水合质子的奇案。
Acc Chem Res. 2012 Jan 17;45(1):101-9. doi: 10.1021/ar200140h. Epub 2011 Aug 22.

引用本文的文献

本文引用的文献

4
Perspective: How good is DFT for water?观点:密度泛函理论对水的适用性如何?
J Chem Phys. 2016 Apr 7;144(13):130901. doi: 10.1063/1.4944633.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验