Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
Trends Microbiol. 2018 Feb;26(2):102-118. doi: 10.1016/j.tim.2017.09.004. Epub 2017 Oct 30.
Seasonal influenza is controlled through vaccination campaigns. Evolution of influenza virus antigens means that vaccines must be updated to match novel strains, and vaccine effectiveness depends on the ability of scientists to predict nearly a year in advance which influenza variants will dominate in upcoming seasons. In this review, we highlight a promising new surveillance tool: predictive models. Based on data-sharing and close collaboration between the World Health Organization and academic scientists, these models use surveillance data to make quantitative predictions regarding influenza evolution. Predictive models demonstrate the potential of applied evolutionary biology to improve public health and disease control. We review the state of influenza predictive modeling and discuss next steps and recommendations to ensure that these models deliver upon their considerable biomedical promise.
季节性流感通过疫苗接种活动来控制。流感病毒抗原的演变意味着疫苗必须更新以匹配新型毒株,而疫苗的有效性取决于科学家提前将近一年预测哪种流感变体将在下一个季节占主导地位的能力。在这篇综述中,我们强调了一种有前途的新监测工具:预测模型。基于世界卫生组织与学术科学家之间的数据共享和密切合作,这些模型使用监测数据对流感进化进行定量预测。预测模型展示了应用进化生物学改善公共卫生和疾病控制的潜力。我们回顾了流感预测建模的现状,并讨论了确保这些模型实现其重要的生物医学承诺的下一步措施和建议。