ETH Zurich, Institute of Electromagnetic Fields (IEF), 8092 Zurich, Switzerland.
University of Washington, Department of Chemistry, Seattle, WA 98195-1700, USA.
Science. 2017 Nov 3;358(6363):630-632. doi: 10.1126/science.aan5953.
Plasmonics provides a possible route to overcome both the speed limitations of electronics and the critical dimensions of photonics. We present an all-plasmonic 116-gigabits per second electro-optical modulator in which all the elements-the vertical grating couplers, splitters, polarization rotators, and active section with phase shifters-are included in a single metal layer. The device can be realized on any smooth substrate surface and operates with low energy consumption. Our results show that plasmonics is indeed a viable path to an ultracompact, highest-speed, and low-cost technology that might find many applications in a wide range of fields of sensing and communications because it is compatible with and can be placed on a wide variety of materials.
等离子体光学提供了一种可能的途径,可以克服电子学的速度限制和光子学的关键尺寸限制。我们提出了一种全等离子体 116Gbps 电光调制器,其中所有元件——垂直光栅耦合器、分束器、偏振旋转器和带有相移器的有源部分——都包含在单个金属层中。该器件可以在任何光滑的衬底表面上实现,并且具有低能耗的特点。我们的结果表明,等离子体光学确实是一条可行的途径,可以实现超紧凑、最高速度和低成本的技术,由于它与各种材料兼容并可以放置在这些材料上,因此可能在传感和通信等广泛领域有许多应用。