Suppr超能文献

硅光子学中的聚合物调制器:综述与展望

Polymer modulators in silicon photonics: review and projections.

作者信息

Taghavi Iman, Moridsadat Maryam, Tofini Alexander, Raza Shaheer, Jaeger Nicolas A F, Chrostowski Lukas, Shastri Bhavin J, Shekhar Sudip

机构信息

Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall V6T 1Z4, Vancouver, BC, Canada.

Department of Physics, Engineering Physics & Astronomy, Queen's University, Stirling Hall, 64 Bader Lane K7L 3N6, Kingston, ON, Canada.

出版信息

Nanophotonics. 2022 Jul 15;11(17):3855-3871. doi: 10.1515/nanoph-2022-0141. eCollection 2022 Sep.

Abstract

Optical modulators are vital for many applications, including telecommunication, data communication, optical computing, and microwave photonic links. A compact modulator with low voltage drive requirement, low power, high speed, and compatibility with CMOS foundry process is highly desirable. Current modulator technologies in Si suffer from trade-offs that constrain their power, performance (speed, drive voltage), and area. The introduction of additional materials to the silicon platform for efficient phase shift promises alternatives to relax those trade-offs. Si-organic-hybrid (SOH) devices demonstrate large modulation bandwidth leveraging the electro-optic (EO) effect and smaller drive voltage or footprint owing to a strong EO coefficient. In this study, we review various SOH modulators and describe their path towards integration to silicon, including their challenges associated with aging and temperature. We also briefly discuss other high-performance modulators such as plasmonic-organic-hybrid (POH), photonic-crystal-assisted SOH, and LiNbO.

摘要

光学调制器对于许多应用至关重要,包括电信、数据通信、光学计算和微波光子链路。人们非常希望有一个紧凑的调制器,它具有低电压驱动要求、低功耗、高速以及与CMOS代工工艺兼容的特点。目前硅基调制器技术存在一些权衡,限制了它们的功率、性能(速度、驱动电压)和面积。在硅平台中引入额外材料以实现高效相移有望提供替代方案来缓解这些权衡。硅有机混合(SOH)器件利用电光(EO)效应展示出大的调制带宽,并且由于强EO系数而具有较小的驱动电压或占用面积。在本研究中,我们回顾了各种SOH调制器,并描述了它们与硅集成的路径,包括与老化和温度相关的挑战。我们还简要讨论了其他高性能调制器,如等离子体有机混合(POH)、光子晶体辅助SOH和铌酸锂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/864a/11502111/8595286b5701/j_nanoph-2022-0141_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验