Suppr超能文献

一种用于约束微分同胚图像配准的半拉格朗日两级预处理牛顿-克里洛夫求解器。

A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

作者信息

Mang Andreas, Biros George

机构信息

The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712-0027, US.

出版信息

SIAM J Sci Comput. 2017;39(6):B1064-B1101. doi: 10.1137/16M1070475. Epub 2017 Nov 21.

Abstract

We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 speedup for a two dimensional, real world multi-subject medical image registration problem.

摘要

我们提出了一种用于求解微分同胚图像配准问题的高效数值算法。我们使用由偏微分方程(PDE)约束的变分公式,其中约束条件是一个标量输运方程。对于输运方程,我们在空间上使用伪谱离散化,并采用二阶精度的半拉格朗日时间步长方案。我们使用预处理的、全局化的、无矩阵牛顿 - 克里洛夫方案来求解稳态速度场。我们提出并测试了一种两级海森预处理方法。我们考虑在粗网格上求逆预处理矩阵的两种策略:一种嵌套预处理共轭梯度法(精确求解)和一种具有固定迭代次数的嵌套切比雪夫迭代法(不精确求解)。我们在不同的合成和实际二维应用场景中测试了求解器的性能。我们研究了新方案的网格收敛性和计算效率。我们将求解器的性能与我们最初的实现进行了比较,最初的实现使用相同的空间离散化,但对于输运方程的数值时间积分采用标准的显式二阶龙格 - 库塔方案和单级预处理方法。我们改进后的方案比原始实现有显著的加速。作为一个亮点,我们观察到对于一个二维实际多主体医学图像配准问题有20倍的加速。

相似文献

1
A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(6):B1064-B1101. doi: 10.1137/16M1070475. Epub 2017 Nov 21.
2
CLAIRE: A DISTRIBUTED-MEMORY SOLVER FOR CONSTRAINED LARGE DEFORMATION DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2019;41(5):C548-C584. doi: 10.1137/18m1207818. Epub 2019 Oct 24.
3
An Inexact Newton-Krylov Algorithm for Constrained Diffeomorphic Image Registration.
SIAM J Imaging Sci. 2015;8(2):1030-1069. doi: 10.1137/140984002. Epub 2015 May 5.
4
A LAGRANGIAN GAUSS-NEWTON-KRYLOV SOLVER FOR MASS- AND INTENSITY-PRESERVING DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(5):B860-B885. doi: 10.1137/17M1114132. Epub 2017 Sep 26.
5
Constrained -regularization schemes for diffeomorphic image registration.
SIAM J Imaging Sci. 2016;9(3):1154-1194. doi: 10.1137/15M1010919. Epub 2016 Aug 30.
6
Newton-Raphson preconditioner for Krylov type solvers on GPU devices.
Springerplus. 2016 Jun 21;5(1):788. doi: 10.1186/s40064-016-2346-7. eCollection 2016.
8
Multi-Node Multi-GPU Diffeomorphic Image Registration for Large-Scale Imaging Problems.
Int Conf High Perform Comput Netw Storage Anal. 2020 Nov;2020. doi: 10.1109/sc41405.2020.00042.
10

引用本文的文献

2
Multi-Node Multi-GPU Diffeomorphic Image Registration for Large-Scale Imaging Problems.
Int Conf High Perform Comput Netw Storage Anal. 2020 Nov;2020. doi: 10.1109/sc41405.2020.00042.
3
CLAIRE: Constrained Large Deformation Diffeomorphic Image Registration on Parallel Computing Architectures.
J Open Source Softw. 2021;6(61). doi: 10.21105/joss.03038. Epub 2021 May 30.
4
CLAIRE: A DISTRIBUTED-MEMORY SOLVER FOR CONSTRAINED LARGE DEFORMATION DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2019;41(5):C548-C584. doi: 10.1137/18m1207818. Epub 2019 Oct 24.
5
A DOMAIN DECOMPOSITION PRECONDITIONING FOR AN INVERSE VOLUME SCATTERING PROBLEM.
Inverse Probl. 2020 Mar;36(3). doi: 10.1088/1361-6420/ab6e78. Epub 2020 Feb 14.
6
Fast GPU 3D diffeomorphic image registration.
J Parallel Distrib Comput. 2021 Mar;149:149-162. doi: 10.1016/j.jpdc.2020.11.006. Epub 2020 Dec 10.
7
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.
8
Coupling brain-tumor biophysical models and diffeomorphic image registration.
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
9
A LAGRANGIAN GAUSS-NEWTON-KRYLOV SOLVER FOR MASS- AND INTENSITY-PRESERVING DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(5):B860-B885. doi: 10.1137/17M1114132. Epub 2017 Sep 26.

本文引用的文献

1
Constrained -regularization schemes for diffeomorphic image registration.
SIAM J Imaging Sci. 2016;9(3):1154-1194. doi: 10.1137/15M1010919. Epub 2016 Aug 30.
2
An Inexact Newton-Krylov Algorithm for Constrained Diffeomorphic Image Registration.
SIAM J Imaging Sci. 2015;8(2):1030-1069. doi: 10.1137/140984002. Epub 2015 May 5.
3
An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas.
J Math Biol. 2016 Jan;72(1-2):409-33. doi: 10.1007/s00285-015-0888-x. Epub 2015 May 12.
4
Continuous Maximal Flows and Wulff Shapes: Application to MRFs.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2009 Jun;2009:1911-1918. doi: 10.1109/CVPR.2009.5206565.
5
Gauss-Newton inspired preconditioned optimization in large deformation diffeomorphic metric mapping.
Phys Med Biol. 2014 Oct 21;59(20):6085-115. doi: 10.1088/0031-9155/59/20/6085. Epub 2014 Sep 25.
6
Deformable medical image registration: a survey.
IEEE Trans Med Imaging. 2013 Jul;32(7):1153-90. doi: 10.1109/TMI.2013.2265603. Epub 2013 May 31.
8
Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation.
Neuroimage. 2011 Apr 1;55(3):954-67. doi: 10.1016/j.neuroimage.2010.12.049. Epub 2011 Jan 7.
9
Diffeomorphic demons: efficient non-parametric image registration.
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.
10
Symmetric log-domain diffeomorphic Registration: a demons-based approach.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):754-61. doi: 10.1007/978-3-540-85988-8_90.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验