Mang Andreas, Biros George
The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712-0027, US.
SIAM J Sci Comput. 2017;39(6):B1064-B1101. doi: 10.1137/16M1070475. Epub 2017 Nov 21.
We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 speedup for a two dimensional, real world multi-subject medical image registration problem.
我们提出了一种用于求解微分同胚图像配准问题的高效数值算法。我们使用由偏微分方程(PDE)约束的变分公式,其中约束条件是一个标量输运方程。对于输运方程,我们在空间上使用伪谱离散化,并采用二阶精度的半拉格朗日时间步长方案。我们使用预处理的、全局化的、无矩阵牛顿 - 克里洛夫方案来求解稳态速度场。我们提出并测试了一种两级海森预处理方法。我们考虑在粗网格上求逆预处理矩阵的两种策略:一种嵌套预处理共轭梯度法(精确求解)和一种具有固定迭代次数的嵌套切比雪夫迭代法(不精确求解)。我们在不同的合成和实际二维应用场景中测试了求解器的性能。我们研究了新方案的网格收敛性和计算效率。我们将求解器的性能与我们最初的实现进行了比较,最初的实现使用相同的空间离散化,但对于输运方程的数值时间积分采用标准的显式二阶龙格 - 库塔方案和单级预处理方法。我们改进后的方案比原始实现有显著的加速。作为一个亮点,我们观察到对于一个二维实际多主体医学图像配准问题有20倍的加速。