Suppr超能文献

基于网格到光栅感兴趣区域的多模态图像非刚性配准。

Mesh-to-raster region-of-interest-based nonrigid registration of multimodal images.

作者信息

Tatano Rosalia, Berkels Benjamin, Deserno Thomas M

机构信息

RWTH Aachen University, Aachen Institute for Advanced Study in Computational Engineering Science (AICES), Aachen, Germany.

University of Braunschweig, Peter L. Reichertz Institute for Medical Informatics, Institute of Technology and Hannover Medical School, Braunschweig, Germany.

出版信息

J Med Imaging (Bellingham). 2017 Oct;4(4):044002. doi: 10.1117/1.JMI.4.4.044002. Epub 2017 Oct 27.

Abstract

Region of interest (RoI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from computed axial tomography scanners as pixel or voxel data. Previously, we presented a 2-D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster framework to register RoIs in multimodal images; (ii) a 3-D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2-D using ground truth (GT) provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem, where the objective consists of a data term, which involves the signed distance function of the RoI from the reference image and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The RoI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit and Elastix.

摘要

医学图像中的感兴趣区域(RoI)对齐在诊断、手术规划、治疗和随访中起着至关重要的作用。通常,模型表示为三角网格,而患者数据则由计算机断层扫描扫描仪以像素或体素数据的形式提供。此前,我们提出了一种用于曲线到像素配准的二维方法。本文贡献如下:(i)一个用于在多模态图像中配准RoI的通用网格到光栅框架;(ii)一种三维表面到体素的应用;以及(iii)使用同时真值和性能水平估计(STAPLE)方法提供的地面真值(GT)在二维中进行全面的定量评估。配准被公式化为一个最小化问题,其中目标由一个数据项组成,该数据项涉及RoI与参考图像的有符号距离函数以及用于变形的高阶弹性正则化器。评估基于脱钙牙齿的定量光诱导荧光透视(QLF)和数字摄影(DP)。在来自32名受试者的150对图像上计算STAPLE,每对图像在两种模态下都显示一颗相应的牙齿。每张图像中的RoI由三位专家手动标记(总共900条曲线)。在QLF-DP设置中,我们的方法显著优于使用Insight分割和配准工具包以及Elastix实现的基于互信息的配准算法。

相似文献

本文引用的文献

2
Survey of Non-Rigid Registration Tools in Medicine.医学中非刚性配准工具综述
J Digit Imaging. 2017 Feb;30(1):102-116. doi: 10.1007/s10278-016-9915-8.
3
The Virtual Physiological Human: Ten Years After.虚拟生理人:十年之后
Annu Rev Biomed Eng. 2016 Jul 11;18:103-23. doi: 10.1146/annurev-bioeng-110915-114742.
8
Co-registration of intra-operative brain surface photographs and pre-operative MR images.术中脑表面照片与术前磁共振图像的配准。
Int J Comput Assist Radiol Surg. 2014 May;9(3):387-400. doi: 10.1007/s11548-014-0979-y. Epub 2014 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验