a Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) , Gosselies , Belgium.
b Department of Biochemistry and Molecular Biology , Vilnius University Joint Life Sciences Center , Vilnius , Lithuania.
RNA Biol. 2018 Mar 4;15(3):303-307. doi: 10.1080/15476286.2017.1391439. Epub 2018 Jan 30.
Toxin-antitoxin systems (TA) are widespread in bacteria and archea. They are commonly found in chromosomes and mobile genetic elements. These systems move from different genomic locations and bacterial hosts through horizontal gene transfer, using mobile elements as vehicles. Their potential roles in bacterial physiology are still a matter of debate in the field. The mechanisms of action of different toxin families have been deciphered at the molecular level. Intriguingly, the vast majority of these toxins target protein synthesis. They use a variety of molecular mechanisms and inhibit nearly every step of the translation process. Recently, we have identified a novel toxin, AtaT, presenting acetyltransferase activity. Our work uncovered the molecular activity of AtaT: it specifically acetylates the methionine moiety on the initiator Met-tRNAfMet. This modification drastically impairs recognition by initiation factor 2 (IF2), thereby inhibiting the initiation step of translation.
毒素-抗毒素系统 (TA) 在细菌和古菌中广泛存在。它们通常存在于染色体和移动遗传元件中。这些系统通过水平基因转移,利用移动元件作为载体,从不同的基因组位置和细菌宿主中转移。它们在细菌生理学中的潜在作用在该领域仍存在争议。不同毒素家族的作用机制已在分子水平上被破译。有趣的是,这些毒素中的绝大多数都针对蛋白质合成。它们使用多种分子机制,并抑制翻译过程的几乎每一个步骤。最近,我们发现了一种新型毒素 AtaT,它具有乙酰转移酶活性。我们的工作揭示了 AtaT 的分子活性:它特异性地乙酰化起始 Met-tRNAfMet 上的甲硫氨酸部分。这种修饰极大地削弱了起始因子 2 (IF2) 的识别,从而抑制了翻译的起始步骤。