Suppr超能文献

CT 影像组学特征对接受表皮生长因子受体酪氨酸激酶抑制剂治疗的肺腺癌患者的预后价值。

The prognostic value of CT radiomic features for patients with pulmonary adenocarcinoma treated with EGFR tyrosine kinase inhibitors.

机构信息

Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.

Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.

出版信息

PLoS One. 2017 Nov 3;12(11):e0187500. doi: 10.1371/journal.pone.0187500. eCollection 2017.

Abstract

PURPOSE

To determine if the radiomic features on CT can predict progression-free survival (PFS) in epidermal growth factor receptor (EGFR) mutant adenocarcinoma patients treated with first-line EGFR tyrosine kinase inhibitors (TKIs) and to identify the incremental value of radiomic features over conventional clinical factors in PFS prediction.

METHODS

In this institutional review board-approved retrospective study, pretreatment contrast-enhanced CT and first follow-up CT after initiation of TKIs were analyzed in 48 patients (M:F = 23:25; median age: 61 years). Radiomic features at baseline, at 1st first follow-up, and the percentage change between the two were determined. A Cox regression model was used to predict PFS with nonredundant radiomic features and clinical factors, respectively. The incremental value of radiomic features over the clinical factors in PFS prediction was also assessed by way of a concordance index.

RESULTS

Roundness (HR: 3.91; 95% CI: 1.72, 8.90; P = 0.001) and grey-level nonuniformity (HR: 3.60; 95% CI: 1.80, 7.18; P<0.001) were independent predictors of PFS. For clinical factors, patient age (HR: 2.11; 95% CI: 1.01, 4.39; P = 0.046), baseline tumor diameter (HR: 1.03; 95% CI: 1.01, 1.05; P = 0.002), and treatment response (HR: 0.46; 95% CI: 0.24, 0.87; P = 0.017) were independent predictors. The addition of radiomic features to clinical factors significantly improved predictive performance (concordance index; combined model = 0.77, clinical-only model = 0.69, P<0.001).

CONCLUSIONS

Radiomic features enable PFS estimation in EGFR mutant adenocarcinoma patients treated with first-line EGFR TKIs. Radiomic features combined with clinical factors provide significant improvement in prognostic performance compared with using only clinical factors.

摘要

目的

确定 CT 上的放射组学特征是否可以预测接受一线表皮生长因子受体(EGFR)酪氨酸激酶抑制剂(TKI)治疗的 EGFR 突变型腺癌患者的无进展生存期(PFS),并确定放射组学特征在 PFS 预测中对常规临床因素的增量价值。

方法

在这项经机构审查委员会批准的回顾性研究中,对 48 名患者(男:女=23:25;中位年龄:61 岁)的治疗前增强 CT 和起始 TKI 后首次随访 CT 进行了分析。在基线、第一次随访时和两次之间的百分比变化时确定了放射组学特征。使用 Cox 回归模型分别使用非冗余放射组学特征和临床因素预测 PFS。还通过一致性指数评估了放射组学特征在 PFS 预测中相对于临床因素的增量价值。

结果

圆形度(HR:3.91;95%CI:1.72,8.90;P=0.001)和灰度不均匀性(HR:3.60;95%CI:1.80,7.18;P<0.001)是 PFS 的独立预测因子。对于临床因素,患者年龄(HR:2.11;95%CI:1.01,4.39;P=0.046)、基线肿瘤直径(HR:1.03;95%CI:1.01,1.05;P=0.002)和治疗反应(HR:0.46;95%CI:0.24,0.87;P=0.017)是独立的预测因子。放射组学特征与临床因素相结合可显著提高预测性能(一致性指数;综合模型=0.77,仅临床模型=0.69,P<0.001)。

结论

放射组学特征可用于预测接受一线 EGFR TKI 治疗的 EGFR 突变型腺癌患者的 PFS。放射组学特征与临床因素相结合,与仅使用临床因素相比,可显著提高预后性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26e3/5669442/46edb8427436/pone.0187500.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验