Suppr超能文献

自动化、无参考的头颈部放射治疗多模态变形图像配准的局部误差评估。

Automated, reference-free local error assessment of multimodal deformable image registration for radiotherapy in the head and neck.

机构信息

Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, UK.

Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, UK.

出版信息

Radiother Oncol. 2017 Dec;125(3):478-484. doi: 10.1016/j.radonc.2017.10.004. Epub 2017 Oct 31.

Abstract

BACKGROUND

Head and neck MR-CT deformable image registration (DIR) for radiotherapy planning is hindered by the lack of both ground-truth and per-patient accuracy assessment methods. This study assesses novel post-registration reference-free error assessment algorithms, based on local rigid re-registration of native and pseudomodality images.

METHODS

Head and neck MR obtained in and out of the treatment position underwent DIR to planning CT. Block-wise mutual information (b-MI) and pseudomodality mutual information (b-pmMI) algorithms were validated against applied rotations and translations. Inherent registration error detection was compared across 14 patient datasets.

RESULTS

Using radiotherapy position MR-CT DIR, quantitative comparison of applied rotations and translations revealed that errors between 1 and 4 mm were accurately determined by both algorithms. Using diagnostic position MR-CT DIR, translations of up to 5 mm were accurately detected within the gross tumour volume by both methods. In 14 patient datasets, b-MI and b-pmMI detected similar errors with improved stability in regions of low contrast or CT artefact and a 10-fold speedup for b-pmMI.

CONCLUSIONS

b-MI and b-pmMI algorithms have been validated as providing accurate reference-free quantitative assessment of DIR accuracy on a per-patient basis. b-pmMI is faster and more robust in the presence of modality-specific information.

摘要

背景

头颈部磁共振 CT 变形图像配准(DIR)在放射治疗计划中受到缺乏真实数据和针对每个患者的准确性评估方法的阻碍。本研究评估了基于局部刚性重新配准原始和伪模态图像的新型后配准无参考误差评估算法。

方法

在治疗位置和治疗外位置采集的头颈部 MR 进行 DIR 到计划 CT。分块互信息(b-MI)和伪模态互信息(b-pmMI)算法针对应用的旋转和平移进行了验证。在 14 个患者数据集上比较了固有注册错误检测。

结果

使用放射治疗位置的 MR-CT DIR,对应用的旋转和平移进行定量比较表明,这两种算法都能准确确定 1 到 4mm 之间的误差。使用诊断位置的 MR-CT DIR,两种方法都能在整个肿瘤体积内准确检测到高达 5mm 的平移。在 14 个患者数据集上,b-MI 和 b-pmMI 检测到相似的误差,在对比度低或 CT 伪影区域的稳定性得到改善,并且 b-pmMI 的速度提高了 10 倍。

结论

b-MI 和 b-pmMI 算法已被验证可提供基于每个患者的 DIR 准确性的准确无参考定量评估。b-pmMI 在存在模态特定信息时更快且更稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验