Johns Hopkins Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA.
CAAT-Europe, University of Konstanz, Konstanz, Germany.
ALTEX. 2017;34(4):459-478. doi: 10.14573/altex.1710141.
Computational prediction of toxicity has reached new heights as a result of decades of growth in the magnitude and diversity of biological data. Public packages for statistics and machine learning make model creation faster. New theory in machine learning and cheminformatics enables integration of chemical structure, toxicogenomics, simulated and physical data in the prediction of chemical health hazards, and other toxicological information. Our earlier publications have characterized a toxicological dataset of unprecedented scale resulting from the European REACH legislation (Registration Evaluation Authorisation and Restriction of Chemicals). These publications dove into potential use cases for regulatory data and some models for exploiting this data. This article analyzes the options for the identification and categorization of chemicals, moves on to the derivation of descriptive features for chemicals, discusses different kinds of targets modeled in computational toxicology, and ends with a high-level perspective of the algorithms used to create computational toxicology models.
由于数十年来生物数据的数量和多样性不断增长,毒性的计算预测已经达到了新的高度。统计学和机器学习的公共软件包使模型的创建速度更快。机器学习和化学信息学的新理论使得可以在化学健康危害预测以及其他毒理学信息中整合化学结构、毒理基因组学、模拟和物理数据。我们之前的出版物已经描述了一个规模空前的毒理学数据集,这是欧洲 REACH 法规(化学品注册、评估、授权和限制)的结果。这些出版物探讨了监管数据的潜在用途和一些利用这些数据的模型。本文分析了识别和分类化学品的选择,接着推导出化学品的描述性特征,讨论了计算毒理学中建模的不同类型的靶标,最后从算法的角度来创建计算毒理学模型。