Suppr超能文献

预测化学物质的毒性:软件胜过动物试验。

Predicting toxicity of chemicals: software beats animal testing.

作者信息

Hartung Thomas

机构信息

Johns Hopkins University Center for Alternatives to Animal Testing (CAAT) Baltimore MD USA.

University of Konstanz CAAT-Europe Konstanz Germany.

出版信息

EFSA J. 2019 Jul 8;17(Suppl 1):e170710. doi: 10.2903/j.efsa.2019.e170710. eCollection 2019 Jul.

Abstract

We created earlier a large machine-readable database of 10,000 chemicals and 800,000 associated studies by natural language processing of the public parts of Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) registrations until December 2014. This database was used to assess the reproducibility of the six most frequently used Organisation for Economic Co-operation and Development (OECD) guideline tests. These tests consume 55% of all animals in safety testing in Europe, i.e. about 600,000 animals. With 350-750 chemicals with multiple results per test, reproducibility (balanced accuracy) was 81% and 69% of toxic substances were found again in a repeat experiment (sensitivity 69%). Inspired by the increasingly used read-across approach, we created a new type of QSAR, which is based on similarity of chemicals and not on chemical descriptors. A landscape of the chemical universe using 10 million structures was calculated, when based on Tanimoto indices similar chemicals are close and dissimilar chemicals far from each other. This allows placing any chemical of interest into the map and evaluating the information available for surrounding chemicals. In a data fusion approach, in which 74 different properties were taken into consideration, machine learning (random forest) allowed a fivefold cross-validation for 190,000 (non-) hazard labels of chemicals for which nine hazards were predicted. The balanced accuracy of this approach was 87% with a sensitivity of 89%. Each prediction comes with a certainty measure based on the homogeneity of data and distance of neighbours. Ongoing developments and future opportunities are discussed.

摘要

我们此前通过对截至2014年12月的化学品注册、评估、授权和限制(REACH)注册公开部分进行自然语言处理,创建了一个包含10000种化学品和800000项相关研究的大型机器可读数据库。该数据库用于评估经济合作与发展组织(OECD)最常用的六项准则测试的可重复性。这些测试消耗了欧洲安全测试中所有动物的55%,即约600000只动物。每次测试有350 - 750种化学品产生多个结果,可重复性(平衡准确率)为81%,在重复实验中再次发现69%的有毒物质(灵敏度69%)。受越来越多地使用的类推法启发,我们创建了一种新型的定量构效关系(QSAR),它基于化学品的相似性而非化学描述符。基于Tanimoto指数计算了一个包含1000万个结构的化学宇宙景观,据此相似的化学品距离相近,不相似的化学品距离较远。这使得能够将任何感兴趣的化学品置于该地图中,并评估周围化学品的可用信息。在一种考虑了74种不同性质的数据融合方法中,机器学习(随机森林)对预测了九种危害的190000种化学品(非)危害标签进行了五重交叉验证。该方法的平衡准确率为87%,灵敏度为89%。每个预测都带有基于数据同质性和邻域距离的确定性度量。文中还讨论了正在进行的发展和未来机遇。

相似文献

1
Predicting toxicity of chemicals: software beats animal testing.预测化学物质的毒性:软件胜过动物试验。
EFSA J. 2019 Jul 8;17(Suppl 1):e170710. doi: 10.2903/j.efsa.2019.e170710. eCollection 2019 Jul.

引用本文的文献

8
Advancing human health risk assessment.推进人类健康风险评估。
EFSA J. 2019 Jul 8;17(Suppl 1):e170712. doi: 10.2903/j.efsa.2019.e170712. eCollection 2019 Jul.
10
Managing evidence in food safety and nutrition.食品安全与营养领域的证据管理。
EFSA J. 2019 Jul 8;17(Suppl 1):e170704. doi: 10.2903/j.efsa.2019.e170704. eCollection 2019 Jul.

本文引用的文献

2
Regulatory acceptance of read-across.监管机构对类推的认可。
ALTEX. 2018;35(3):413-419. doi: 10.14573/altex.1805081.
10
Toward Good Read-Across Practice (GRAP) guidance.迈向良好的类推实践(GRAP)指南。
ALTEX. 2016;33(2):149-66. doi: 10.14573/altex.1601251. Epub 2016 Feb 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验