机器学习和人工智能在毒理学科学中的应用。

Machine Learning and Artificial Intelligence in Toxicological Sciences.

机构信息

Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32610, USA.

Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32608, USA.

出版信息

Toxicol Sci. 2022 Aug 25;189(1):7-19. doi: 10.1093/toxsci/kfac075.

Abstract

Machine learning and artificial intelligence approaches have revolutionized multiple disciplines, including toxicology. This review summarizes representative recent applications of machine learning and artificial intelligence approaches in different areas of toxicology, including physiologically based pharmacokinetic (PBPK) modeling, quantitative structure-activity relationship modeling for toxicity prediction, adverse outcome pathway analysis, high-throughput screening, toxicogenomics, big data, and toxicological databases. By leveraging machine learning and artificial intelligence approaches, now it is possible to develop PBPK models for hundreds of chemicals efficiently, to create in silico models to predict toxicity for a large number of chemicals with similar accuracies compared with in vivo animal experiments, and to analyze a large amount of different types of data (toxicogenomics, high-content image data, etc.) to generate new insights into toxicity mechanisms rapidly, which was impossible by manual approaches in the past. To continue advancing the field of toxicological sciences, several challenges should be considered: (1) not all machine learning models are equally useful for a particular type of toxicology data, and thus it is important to test different methods to determine the optimal approach; (2) current toxicity prediction is mainly on bioactivity classification (yes/no), so additional studies are needed to predict the intensity of effect or dose-response relationship; (3) as more data become available, it is crucial to perform rigorous data quality check and develop infrastructure to store, share, analyze, evaluate, and manage big data; and (4) it is important to convert machine learning models to user-friendly interfaces to facilitate their applications by both computational and bench scientists.

摘要

机器学习和人工智能方法已经彻底改变了多个学科,包括毒理学。本综述总结了机器学习和人工智能方法在毒理学不同领域的代表性最新应用,包括基于生理学的药代动力学 (PBPK) 建模、毒性预测的定量构效关系建模、不良结局途径分析、高通量筛选、毒代基因组学、大数据和毒理学数据库。通过利用机器学习和人工智能方法,现在可以有效地为数百种化学物质开发 PBPK 模型,创建能够以与体内动物实验相当的准确度预测大量化学物质毒性的计算模型,并分析大量不同类型的数据(毒代基因组学、高内涵图像数据等),快速深入了解毒性机制,这在过去是通过人工方法无法实现的。为了继续推进毒理学科学领域的发展,应该考虑以下几个挑战:(1)并非所有机器学习模型都对特定类型的毒理学数据同样有用,因此重要的是测试不同的方法来确定最佳方法;(2)目前的毒性预测主要是生物活性分类(是/否),因此需要进一步研究来预测效应强度或剂量反应关系;(3)随着更多的数据可用,必须严格检查数据质量并开发基础设施来存储、共享、分析、评估和管理大数据;(4)将机器学习模型转换为用户友好的界面,以方便计算和实验科学家应用,这一点很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索