Kamomae Takeshi, Shimizu Hidetoshi, Nakaya Takayoshi, Okudaira Kuniyasu, Aoyama Takahiro, Oguchi Hiroshi, Komori Masataka, Kawamura Mariko, Ohtakara Kazuhiro, Monzen Hajime, Itoh Yoshiyuki, Naganawa Shinji
Department of Therapeutic Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-Ku, Nagoya 464-8681, Aichi, Japan.
Phys Med. 2017 Dec;44:205-211. doi: 10.1016/j.ejmp.2017.10.005. Epub 2017 Oct 26.
Pretreatment intensity-modulated radiotherapy quality assurance is performed using simple rectangular or cylindrical phantoms; thus, the dosimetric errors caused by complex patient-specific anatomy are absent in the evaluation objects. In this study, we construct a system for generating patient-specific three-dimensional (3D)-printed phantoms for radiotherapy dosimetry. An anthropomorphic head phantom containing the bone and hollow of the paranasal sinus is scanned by computed tomography (CT). Based on surface rendering data, a patient-specific phantom is formed using a fused-deposition-modeling-based 3D printer, with a polylactic acid filament as the printing material. Radiophotoluminescence glass dosimeters can be inserted in the 3D-printed phantom. The phantom shape, CT value, and absorbed doses are compared between the actual and 3D-printed phantoms. The shape difference between the actual and printed phantoms is less than 1 mm except in the bottom surface region. The average CT value of the infill region in the 3D-printed phantom is -6 ± 18 Hounsfield units (HU) and that of the vertical shell region is 126 ± 18 HU. When the same plans were irradiated, the dose differences were generally less than 2%. These results demonstrate the feasibility of the 3D-printed phantom for artificial in vivo dosimetry in radiotherapy quality assurance.
预处理调强放射治疗质量保证是使用简单的矩形或圆柱形模体进行的;因此,评估对象中不存在由复杂的患者特异性解剖结构引起的剂量误差。在本研究中,我们构建了一个用于生成患者特异性三维(3D)打印模体以进行放射治疗剂量测定的系统。通过计算机断层扫描(CT)对包含鼻窦骨骼和空腔的拟人化头部模体进行扫描。基于表面渲染数据,使用基于熔融沉积建模的3D打印机,以聚乳酸长丝作为打印材料,形成患者特异性模体。放射性光致发光玻璃剂量计可以插入3D打印模体中。比较实际模体和3D打印模体之间的模体形状、CT值和吸收剂量。除底面区域外,实际模体和打印模体之间的形状差异小于1毫米。3D打印模体中填充区域的平均CT值为-6±18亨氏单位(HU),垂直外壳区域的平均CT值为126±18 HU。当照射相同的计划时,剂量差异通常小于2%。这些结果证明了3D打印模体在放射治疗质量保证中进行人工体内剂量测定的可行性。